赞
踩
图像识别,是指利用计算机对图像进行处理、分析和理解,以识别各种不同模式的目标和对像的技术。根据观测到的图像,对其中的物体分辨其类别,做出有意义的判断。利用现代信息处理与计算技术来模拟和完成人类的认识、理解过程。一般而言,一个图像识别系统主要由三个部分组成,分别是:图像分割、图像特征提取以及分类器的识别分类。
其中,图像分割将图像划分为多个有意义的区域,然后将每个区域的图像进行特征提取,最后分类器根据提取的图像特征对图像进行相对应的分类。实际上,图像识别和图像分割并不存在严格的界限。从某种意义上,图像分割的过程就是图像识别的过程。图像分割着重于对象和背景的关系,研究的是对象在特定背景下所表现出来的整体属性,而图像识别则着重于对象本身的属性。
图像识别的发展经历了三个阶段:文字识别、数字图像处理与识别、物体识别。
图像识别作为计算视觉技术体系中的重要一环,一直备受重视。微软在两年前就公布了一项里程碑式的成果:它的图像系统识别图片的错误率比人类还要低。如今,图像识别技术又发展到一个新高度。这有赖于更多数据的开放、更多基础工具的开源、产业链的更新迭代,以及高性能的AI计算芯片、深度摄像头和优秀的深度学习算法等的进步,这些都为图像识别技术向更深处发展提供了源源不断的动力。
其实对于图像识别技术,大家已经不陌生,人脸识别、虹膜识别、指纹识别等都属于这个范畴,但是图像识别远不只如此,它涵盖了生物识别、物体与场景识别、视频识别三大类。发展至今,尽管与理想还相距甚远,但日渐成熟的图像识别技术已开始探索在各类行业的应用。
==========================================================================
基于BSD许可(开源)发行的跨平台计算机视觉库,可以运行在Linux、Windows、Android和Mac OS操作系统上。
轻量级而且高效——由一系列 C 函数和少量 C++ 类构成,同时提供了Python、Ruby、MATLAB等语言的接口,实现了图像处理和计算机视觉方面的很多通用算法
TensorFlow是一个深度学习框架,支持Linux平台,Windows平台,Mac平台,甚至手机移动设备等各种平台。
TensorFlow提供了非常丰富的深度学习相关的API,可以说目前所有深度学习框架里,提供的API最全的,包括基本的向量矩阵计算、各种优化算法、各种卷积神经网络和循环神经网络基本单元的实现、以及可视化的辅助工具、等等。
YOLO (You Only Look Once)是一种快速和准确的实时对象检测算法。
YOLOv3 在 TensorFlow 中实现的完整数据管道。它可用在数据集上来训练和评估自己的目标检测模型。
=====================================================================
介绍使用OpenCV来实现指定图像识别的DEMO:
①打开应用的同时开启摄像头
②对实时摄像头拍摄的图像封装成MAT对象进行逐帧比对:
获取目标特征并针对各特征集获取描述符
获取两个描述符集合间的匹配项
获取参考图像和空间匹配图像间的单应性
当图像矩阵符合单应性时,绘制跟踪图像的轮廓线
<uses-feature
android:name=“android.hardware.camera.autofocus”
android:required=“false” />
<uses-feature
android:name=“android.hardware.camera.flash”
android:required=“false” />
private void requestPermissions() {
final int REQUEST_CODE = 1;
if (ContextCompat.checkSelfPermission(this, Manifest.permission.CAMERA) != PackageManager.PERMISSION_GRANTED) {
ActivityCompat.requestPermissions(this, new String[]{
Manifest.permission.CAMERA, Manifest.permission.WRITE_EXTERNAL_STORAGE},
REQUEST_CODE);
}
}
<RelativeLayout xmlns:android=“http://schemas.android.com/apk/res/android”
xmlns:opencv=“http://schemas.android.com/apk/res-auto”
xmlns:tools=“http://schemas.android.com/tools”
android:id=“@+id/activity_img_recognition”
android:layout_width=“match_parent”
android:layout_height=“match_parent”
tools:context=“com.sueed.imagerecognition.CameraActivity”>
<org.opencv.android.JavaCameraView
android:id=“@+id/jcv”
android:layout_width=“match_parent”
android:layout_height=“match_parent”
android:visibility=“gone”
opencv:camera_id=“any”
opencv:show_fps=“true” />
因为OpenCV中JavaCameraView继承自SurfaceView,若有需要可以自定义编写extends SurfaceView implements SurfaceHolder.Callback的xxxSurfaceView替换使用。
package com.sueed.imagerecognition;
import android.Manifest;
import android.content.Intent;
import android.content.pm.PackageManager;
import android.os.Bundle;
import android.util.Log;
import android.view.Menu;
import android.view.MenuItem;
import android.view.SurfaceView;
import android.view.View;
import android.view.WindowManager;
import android.widget.ImageView;
import android.widget.RelativeLayout;
import android.widget.Toast;
import androidx.appcompat.app.AppCompatActivity;
import androidx.core.app.ActivityCompat;
import androidx.core.content.ContextCompat;
import com.sueed.imagerecognition.filters.Filter;
import com.sueed.imagerecognition.filters.NoneFilter;
import com.sueed.imagerecognition.filters.ar.ImageDetectionFilter;
import com.sueed.imagerecognition.imagerecognition.R;
import org.opencv.android.CameraBridgeViewBase;
import org.opencv.android.CameraBridgeViewBase.CvCameraViewFrame;
import org.opencv.android.CameraBridgeViewBase.CvCameraViewListener2;
import org.opencv.android.JavaCameraView;
import org.opencv.android.OpenCVLoader;
import org.opencv.core.Mat;
import java.io.IOException;
// Use the deprecated Camera class.
@SuppressWarnings(“deprecation”)
public final class CameraActivity extends AppCompatActivity implements CvCameraViewListener2 {
// A tag for log output.
private static final String TAG = CameraActivity.class.getSimpleName();
// The filters.
private Filter[] mImageDetectionFilters;
// The indices of the active filters.
private int mImageDetectionFilterIndex;
// The camera view.
private CameraBridgeViewBase mCameraView;
@Override
protected void onCreate(final Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
getWindow().addFlags(WindowManager.LayoutParams.FLAG_KEEP_SCREEN_ON);
//init CameraView
mCameraView = new JavaCameraView(this, 0);
mCameraView.setMaxFrameSize(size.MaxWidth, size.MaxHeight);
mCameraView.setCvCameraViewListener(this);
setContentView(mCameraView);
requestPermissions();
mCameraView.enableView();
}
@Override
public void onPause() {
if (mCameraView != null) {
mCameraView.disableView();
}
super.onPause();
}
@Override
public void onResume() {
super.onResume();
OpenCVLoader.initDebug();
}
@Override
public void onDestroy() {
if (mCameraView != null) {
mCameraView.disableView();
}
super.onDestroy();
}
@Override
public boolean onCreateOptionsMenu(final Menu menu) {
getMenuInflater().inflate(R.menu.activity_camera, menu);
return true;
}
@Override
public boolean onOptionsItemSelected(final MenuItem item) {
switch (item.getItemId()) {
case R.id.menu_next_image_detection_filter:
mImageDetectionFilterIndex++;
if (mImageDetectionFilters != null && mImageDetectionFilterIndex == mImageDetectionFilters.length) {
mImageDetectionFilterIndex = 0;
}
return true;
default:
return super.onOptionsItemSelected(item);
}
}
@Override
public void onCameraViewStarted(final int width, final int height) {
Filter Enkidu = null;
try {
Enkidu = new ImageDetectionFilter(CameraActivity.this, R.drawable.enkidu);
} catch (IOException e) {
e.printStackTrace();
}
Filter akbarHunting = null;
try {
akbarHunting = new ImageDetectionFilter(CameraActivity.this, R.drawable.akbar_hunting_with_cheetahs);
} catch (IOException e) {
Log.e(TAG, "Failed to load drawable: " + “akbar_hunting_with_cheetahs”);
e.printStackTrace();
}
mImageDetectionFilters = new Filter[]{
new NoneFilter(),
Enkidu,
akbarHunting
};
}
@Override
public void onCameraViewStopped() {
}
@Override
public Mat onCameraFrame(final CvCameraViewFrame inputFrame) {
final Mat rgba = inputFrame.rgba();
if (mImageDetectionFilters != null) {
mImageDetectionFilters[mImageDetectionFilterIndex].apply(rgba, rgba);
}
return rgba;
}
}
package com.nummist.secondsight.filters.ar;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import org.opencv.android.Utils;
import org.opencv.calib3d.Calib3d;
import org.opencv.core.Core;
自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。
深知大多数Android工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!
因此收集整理了一份《2024年Android移动开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上Android开发知识点,真正体系化!
由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新
如果你觉得这些内容对你有帮助,可以添加V获取:vip204888 (备注Android)
今天关于面试的分享就到这里,还是那句话,有些东西你不仅要懂,而且要能够很好地表达出来,能够让面试官认可你的理解,例如Handler机制,这个是面试必问之题。有些晦涩的点,或许它只活在面试当中,实际工作当中你压根不会用到它,但是你要知道它是什么东西。
最后在这里小编分享一份自己收录整理上述技术体系图相关的几十套腾讯、头条、阿里、美团等公司2021年的面试题,把技术点整理成了视频和PDF(实际上比预期多花了不少精力),包含知识脉络 + 诸多细节,由于篇幅有限,这里以图片的形式给大家展示一部分。
还有 高级架构技术进阶脑图、Android开发面试专题资料,高级进阶架构资料 帮助大家学习提升进阶,也节省大家在网上搜索资料的时间来学习,也可以分享给身边好友一起学习。
【Android核心高级技术PDF文档,BAT大厂面试真题解析】
【算法合集】
【延伸Android必备知识点】
【Android部分高级架构视频学习资源】
**Android精讲视频领取学习后更加是如虎添翼!**进军BATJ大厂等(备战)!现在都说互联网寒冬,其实无非就是你上错了车,且穿的少(技能),要是你上对车,自身技术能力够强,公司换掉的代价大,怎么可能会被裁掉,都是淘汰末端的业务Curd而已!现如今市场上初级程序员泛滥,这套教程针对Android开发工程师1-6年的人员、正处于瓶颈期,想要年后突破自己涨薪的,进阶Android中高级、架构师对你更是如鱼得水,赶快领取吧!
了不少精力),包含知识脉络 + 诸多细节,由于篇幅有限,这里以图片的形式给大家展示一部分。
还有 高级架构技术进阶脑图、Android开发面试专题资料,高级进阶架构资料 帮助大家学习提升进阶,也节省大家在网上搜索资料的时间来学习,也可以分享给身边好友一起学习。
【Android核心高级技术PDF文档,BAT大厂面试真题解析】
[外链图片转存中…(img-EtrNdrES-1711737556122)]
【算法合集】
[外链图片转存中…(img-IJc85E4P-1711737556122)]
【延伸Android必备知识点】
[外链图片转存中…(img-uAPxnLuU-1711737556123)]
【Android部分高级架构视频学习资源】
**Android精讲视频领取学习后更加是如虎添翼!**进军BATJ大厂等(备战)!现在都说互联网寒冬,其实无非就是你上错了车,且穿的少(技能),要是你上对车,自身技术能力够强,公司换掉的代价大,怎么可能会被裁掉,都是淘汰末端的业务Curd而已!现如今市场上初级程序员泛滥,这套教程针对Android开发工程师1-6年的人员、正处于瓶颈期,想要年后突破自己涨薪的,进阶Android中高级、架构师对你更是如鱼得水,赶快领取吧!
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。