当前位置:   article > 正文

105. 从前序与中序遍历序列构造二叉树_假设在先序遍历中,u在v之前,后序遍历中u在v之后,那u和v是什么关系

假设在先序遍历中,u在v之前,后序遍历中u在v之后,那u和v是什么关系

根据一棵树的前序遍历与中序遍历构造二叉树

注意:
你可以假设树中没有重复的元素。

例如,给出
前序遍历 preorder = [3,9,20,15,7]
中序遍历 inorder = [9,3,15,20,7]
返回如下的二叉树:

    3
   / \
  9  20
    /  \
   15   7
  • 1
  • 2
  • 3
  • 4
  • 5
class Solution(object):
	def buildTree(self, preorder, inorder):
		if not (preorder and inorder):
			return None
		# 根据前序数组的第一个元素,就可以确定根节点	
		root = TreeNode(preorder[0])
		# 用preorder[0]去中序数组中查找对应的元素
		mid_idx = inorder.index(preorder[0])
		# 递归的处理前序数组的左边部分和中序数组的左边部分
		# 递归处理前序数组右边部分和中序数组右边部分
		root.left = self.buildTree(preorder[1:mid_idx+1],inorder[:mid_idx])
		root.right = self.buildTree(preorder[mid_idx+1:],inorder[mid_idx+1:])
		return root

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14

递归 - 思路

迭代法是一种非常巧妙的实现方法。

对于前序遍历中的任意两个连续节点 u 和 v,根据前序遍历的流程,我们可以知道 u 和 v 只有两种可能的关系:

  • v 是 u 的左儿子。这是因为在遍历到 u 之后,下一个遍历的节点就是 u 的左儿子,即 v;
  • u 没有左儿子,并且 v 是 u 的某个祖先节点(或者 u 本身)的右儿子。如果 u 没有左儿子,那么下一个遍历的节点就是 u 的右儿子。如果 u 没有右儿子,我们就会向上回溯,直到遇到第一个有右儿子(且 u 不在它的右儿子的子树中)的节点 u_a ,那么 v 就是 u_a的右儿子。

第二种关系看上去有些复杂。我们举一个例子来说明其正确性,并在例子中给出我们的迭代算法。

例子

我们以树

        3
       / \
      9  20
     /  /  \
    8  15   7
   / \
  5  10
 /
4
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
为例,它的前序遍历和中序遍历分别为
preorder = [3, 9, 8, 5, 4, 10, 20, 15, 7]
inorder = [4, 5, 8, 10, 9, 3, 15, 20, 7]
  • 1
  • 2
  • 3

我们用一个栈 stack 来维护「当前节点的所有还没有考虑过右儿子的祖先节点」,栈顶就是当前节点。也就是说,只有在栈中的节点才可能连接一个新的右儿子。同时,我们用一个指针 index 指向中序遍历的某个位置,初始值为 0。index 对应的节点是「当前节点不断往左走达到的最终节点」,这也是符合中序遍历的,它的作用在下面的过程中会有所体现。

首先我们将根节点 3 入栈,再初始化 index 所指向的节点为 4,随后对于前序遍历中的每个节点,我们依此判断它是栈顶节点的左儿子,还是栈中某个节点的右儿子。

  • 我们遍历 9。9 一定是栈顶节点 3 的左儿子。我们使用反证法,假设 9 是 3 的右儿子,那么 3 没有左儿子,index 应该恰好指向 3,但实际上为 4,因此产生了矛盾。所以我们将 9 作为 3 的左儿子,并将 9 入栈。
    stack = [3, 9]
    index -> inorder[0] = 4
  • 我们遍历 8,5 和 4。同理可得它们都是上一个节点(栈顶节点)的左儿子,所以它们会依次入栈。
    stack = [3, 9, 8, 5, 4]
    index -> inorder[0] = 4
  • 我们遍历 10,这时情况就不一样了。我们发现 index 恰好指向当前的栈顶节点 4,也就是说 4 没有左儿子,那么 10 必须为栈中某个节点的右儿子。那么如何找到这个节点呢?栈中的节点的顺序和它们在前序遍历中出现的顺序是一致的,而且每一个节点的右儿子都还没有被遍历过,那么这些节点的顺序和它们在中序遍历中出现的顺序一定是相反的。
这是因为栈中的任意两个相邻的节点,前者都是后者的某个祖先。并且我们知道,栈中的任意一个节点的右儿子还没有被遍历过,说明后者一定是前者左儿子的子树中的节点,那么后者就先于前者出现在中序遍历中。
  • 1

因此我们可以把 index 不断向右移动,并与栈顶节点进行比较。如果 index 对应的元素恰好等于栈顶节点,那么说明我们在中序遍历中找到了栈顶节点,所以将 index 增加 1 并弹出栈顶节点,直到 index 对应的元素不等于栈顶节点。按照这样的过程,我们弹出的最后一个节点 x 就是 10 的双亲节点,这是因为 10 出现在了 x 与 x 在栈中的下一个节点的中序遍历之间,因此 10 就是 x 的右儿子。

回到我们的例子,我们会依次从栈顶弹出 4,5 和 8,并且将 index 向右移动了三次。我们将 10 作为最后弹出的节点 8 的右儿子,并将 10 入栈。

stack = [3, 9, 10]
index -> inorder[3] = 10

  • 我们遍历 20。同理,index 恰好指向当前栈顶节点 10,那么我们会依次从栈顶弹出 10,9 和 3,并且将 index 向右移动了三次。我们将 20 作为最后弹出的节点 3 的右儿子,并将 20 入栈。
    stack = [20]
    index -> inorder[6] = 15
  • 我们遍历 15,将 15 作为栈顶节点 20 的左儿子,并将 15 入栈。
    stack = [20, 15]
    index -> inorder[6] = 15

此时遍历结束,我们就构造出了正确的二叉树。

算法
  • 我们归纳出上述例子中的算法流程:
    我们用一个栈和一个指针辅助进行二叉树的构造。初始时栈中存放了根节点(前序遍历的第一个节点),指针指向中序遍历的第一个节点;
  • 我们依次枚举前序遍历中除了第一个节点以外的每个节点。如果 index 恰好指向栈顶节点,那么我们不断地弹出栈顶节点并向右移动 index,并将当前节点作为最后一个弹出的节点的右儿子;如果 index 和栈顶节点不同,我们将当前节点作为栈顶节点的左儿子;
  • 无论是哪一种情况,我们最后都将当前的节点入栈。

最后得到的二叉树即为答案。

class Solution:
    def buildTree(self, preorder: List[int], inorder: List[int]) -> TreeNode:
        def myBuildTree(preorder_left: int, preorder_right: int, inorder_left: int, inorder_right: int):
            if preorder_left > preorder_right:
                return None
            
            # 前序遍历中的第一个节点就是根节点
            preorder_root = preorder_left
            # 在中序遍历中定位根节点
            inorder_root = index[preorder[preorder_root]]
            
            # 先把根节点建立出来
            root = TreeNode(preorder[preorder_root])
            # 得到左子树中的节点数目
            size_left_subtree = inorder_root - inorder_left
            # 递归地构造左子树,并连接到根节点
            # 先序遍历中「从 左边界+1 开始的 size_left_subtree」个元素就对应了中序遍历中「从 左边界 开始到 根节点定位-1」的元素
            root.left = myBuildTree(preorder_left + 1, preorder_left + size_left_subtree, inorder_left, inorder_root - 1)
            # 递归地构造右子树,并连接到根节点
            # 先序遍历中「从 左边界+1+左子树节点数目 开始到 右边界」的元素就对应了中序遍历中「从 根节点定位+1 到 右边界」的元素
            root.right = myBuildTree(preorder_left + size_left_subtree + 1, preorder_right, inorder_root + 1, inorder_right)
            return root
        
        n = len(preorder)
        # 构造哈希映射,帮助我们快速定位根节点
        index = {element: i for i, element in enumerate(inorder)}
        return myBuildTree(0, n - 1, 0, n - 1)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27

迭代

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, x):
#         self.val = x
#         self.left = None
#         self.right = None

class Solution:
    def buildTree(self, preorder: List[int], inorder: List[int]) -> TreeNode:
        if not preorder:
            return None

        root = TreeNode(preorder[0])
        stack = [root]
        inorderIndex = 0
        for i in range(1, len(preorder)):
            preorderVal = preorder[i]
            node = stack[-1]
            #inorderIndex从 0 开始,       
            if node.val != inorder[inorderIndex]:
            	node.left = TreeNode(preorderVal)
                stack.append(node.left)
            else:
             	while stack and stack[-1].val == inorder[inorderIndex]:
                    node = stack.pop()
                    inorderIndex += 1
                node.right = TreeNode(preorderVal)
                stack.append(node.right)
        return root
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小丑西瓜9/article/detail/569992
推荐阅读
相关标签
  

闽ICP备14008679号