赞
踩
根据一棵树的前序遍历与中序遍历构造二叉树。
注意:
你可以假设树中没有重复的元素。
例如,给出
前序遍历 preorder = [3,9,20,15,7]
中序遍历 inorder = [9,3,15,20,7]
返回如下的二叉树:
3
/ \
9 20
/ \
15 7
class Solution(object):
def buildTree(self, preorder, inorder):
if not (preorder and inorder):
return None
# 根据前序数组的第一个元素,就可以确定根节点
root = TreeNode(preorder[0])
# 用preorder[0]去中序数组中查找对应的元素
mid_idx = inorder.index(preorder[0])
# 递归的处理前序数组的左边部分和中序数组的左边部分
# 递归处理前序数组右边部分和中序数组右边部分
root.left = self.buildTree(preorder[1:mid_idx+1],inorder[:mid_idx])
root.right = self.buildTree(preorder[mid_idx+1:],inorder[mid_idx+1:])
return root
递归 - 思路
迭代法是一种非常巧妙的实现方法。
对于前序遍历中的任意两个连续节点 u 和 v,根据前序遍历的流程,我们可以知道 u 和 v 只有两种可能的关系:
第二种关系看上去有些复杂。我们举一个例子来说明其正确性,并在例子中给出我们的迭代算法。
例子
我们以树
3
/ \
9 20
/ / \
8 15 7
/ \
5 10
/
4
为例,它的前序遍历和中序遍历分别为
preorder = [3, 9, 8, 5, 4, 10, 20, 15, 7]
inorder = [4, 5, 8, 10, 9, 3, 15, 20, 7]
我们用一个栈 stack 来维护「当前节点的所有还没有考虑过右儿子的祖先节点」,栈顶就是当前节点。也就是说,只有在栈中的节点才可能连接一个新的右儿子。同时,我们用一个指针 index 指向中序遍历的某个位置,初始值为 0。index 对应的节点是「当前节点不断往左走达到的最终节点」,这也是符合中序遍历的,它的作用在下面的过程中会有所体现。
首先我们将根节点 3 入栈,再初始化 index 所指向的节点为 4,随后对于前序遍历中的每个节点,我们依此判断它是栈顶节点的左儿子,还是栈中某个节点的右儿子。
这是因为栈中的任意两个相邻的节点,前者都是后者的某个祖先。并且我们知道,栈中的任意一个节点的右儿子还没有被遍历过,说明后者一定是前者左儿子的子树中的节点,那么后者就先于前者出现在中序遍历中。
因此我们可以把 index 不断向右移动,并与栈顶节点进行比较。如果 index 对应的元素恰好等于栈顶节点,那么说明我们在中序遍历中找到了栈顶节点,所以将 index 增加 1 并弹出栈顶节点,直到 index 对应的元素不等于栈顶节点。按照这样的过程,我们弹出的最后一个节点 x 就是 10 的双亲节点,这是因为 10 出现在了 x 与 x 在栈中的下一个节点的中序遍历之间,因此 10 就是 x 的右儿子。
回到我们的例子,我们会依次从栈顶弹出 4,5 和 8,并且将 index 向右移动了三次。我们将 10 作为最后弹出的节点 8 的右儿子,并将 10 入栈。
stack = [3, 9, 10]
index -> inorder[3] = 10
此时遍历结束,我们就构造出了正确的二叉树。
最后得到的二叉树即为答案。
class Solution: def buildTree(self, preorder: List[int], inorder: List[int]) -> TreeNode: def myBuildTree(preorder_left: int, preorder_right: int, inorder_left: int, inorder_right: int): if preorder_left > preorder_right: return None # 前序遍历中的第一个节点就是根节点 preorder_root = preorder_left # 在中序遍历中定位根节点 inorder_root = index[preorder[preorder_root]] # 先把根节点建立出来 root = TreeNode(preorder[preorder_root]) # 得到左子树中的节点数目 size_left_subtree = inorder_root - inorder_left # 递归地构造左子树,并连接到根节点 # 先序遍历中「从 左边界+1 开始的 size_left_subtree」个元素就对应了中序遍历中「从 左边界 开始到 根节点定位-1」的元素 root.left = myBuildTree(preorder_left + 1, preorder_left + size_left_subtree, inorder_left, inorder_root - 1) # 递归地构造右子树,并连接到根节点 # 先序遍历中「从 左边界+1+左子树节点数目 开始到 右边界」的元素就对应了中序遍历中「从 根节点定位+1 到 右边界」的元素 root.right = myBuildTree(preorder_left + size_left_subtree + 1, preorder_right, inorder_root + 1, inorder_right) return root n = len(preorder) # 构造哈希映射,帮助我们快速定位根节点 index = {element: i for i, element in enumerate(inorder)} return myBuildTree(0, n - 1, 0, n - 1)
迭代
# Definition for a binary tree node. # class TreeNode: # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution: def buildTree(self, preorder: List[int], inorder: List[int]) -> TreeNode: if not preorder: return None root = TreeNode(preorder[0]) stack = [root] inorderIndex = 0 for i in range(1, len(preorder)): preorderVal = preorder[i] node = stack[-1] #inorderIndex从 0 开始, if node.val != inorder[inorderIndex]: node.left = TreeNode(preorderVal) stack.append(node.left) else: while stack and stack[-1].val == inorder[inorderIndex]: node = stack.pop() inorderIndex += 1 node.right = TreeNode(preorderVal) stack.append(node.right) return root
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。