当前位置:   article > 正文

基于LoRA进行Stable Diffusion的微调_可以用来用lora做微调的数据集

可以用来用lora做微调的数据集

基于LoRA进行Stable Diffusion的微调

数据集

本次微调使用的数据集为: LambdaLabs的Pokemon数据集

使用git clone命令下载数据集

git clone https://huggingface.co/datasets/lambdalabs/pokemon-blip-captions
  • 1

数据集一共883条样本,包含两个部分:image(图)和 text(文),如下图所示。
在这里插入图片描述

模型下载

git clone https://huggingface.co/runwayml/stable-diffusion-v1-5
  • 1

环境配置

# 创建一个新的conda环境
conda create -n diffusers python==3.10
# 激活conda环境
conda activate diffusers
# 下载模型仓库
git clone https://github.com/huggingface/diffusers
# 进入diffusers目录
cd diffusers
# 进行安装
pip install .
cd examples/text_to_image
# 安装环境所需的包
pip install -r requirements.txt
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13

微调过程

微调时只需要使用以下命令运行 train_text_to_image_lora.py 文件即可。需要根据下载的路径文件地址对相应的参数进行修改,如 MODEL_NAME、DATASET_NAME 等;也可以根据GPU资源调整相应的参数,如 train_batch_size、gradient_accumulation_steps 等。

export MODEL_NAME="/data/sim_chatgpt/stable-diffusion-v1-5"
export OUTPUT_DIR="./finetune/lora/pokemon"
export DATASET_NAME="./pokemon-blip-captions"

nohup accelerate launch --mixed_precision="fp16"  train_text_to_image_lora.py \
  --pretrained_model_name_or_path=$MODEL_NAME \
  --dataset_name=$DATASET_NAME \
  --dataloader_num_workers=8 \
  --resolution=512 --center_crop --random_flip \
  --train_batch_size=2 \
  --gradient_accumulation_steps=4 \
  --max_train_steps=7500 \
  --learning_rate=1e-04 \
  --max_grad_norm=1 \
  --lr_scheduler="cosine" --lr_warmup_steps=0 \
  --output_dir=${OUTPUT_DIR} \
  --checkpointing_steps=500 \
  --validation_prompt="Totoro" \
  --seed=1337 \
  >> finetune_log0725.out 2>&1 &
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20

备注:参数设置参考这里,去掉了
export HUB_MODEL_ID=“pokemon-lora”
–push_to_hub
–hub_model_id=${HUB_MODEL_ID}
–report_to=wandb
样本数据量为883,这里设置了train_batch_size为2,max_train_steps为7500,
显存占用约11个G,训练时长约8个小时左右。
在这里插入图片描述
显存占用情况如下:
在这里插入图片描述

推理

微调完成后,可以使用下面代码进行推理。

from diffusers import StableDiffusionPipeline
import torch
model_path = "./finetune/lora/pokemon"
pipe = StableDiffusionPipeline.from_pretrained("/data/sim_chatgpt/stable-diffusion-v1-5", torch_dtype=torch.float16)
pipe.unet.load_attn_procs(model_path)
pipe.to("cuda")

prompt = "A pokemon with green eyes and red legs."
image = pipe(prompt, num_inference_steps=30, guidance_scale=7.5).images[0]
image.save("pokemon.png")      
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

代码运行后,会生成一个 pokemon.png 的图片,如下图所示。
在这里插入图片描述

WebUI部署

git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui
  • 1

需要将原模型文件以及微调后的lora模型文件放到 ~/stable-diffusion-webui/models/Stable-diffusion 下

cp -r /data/sim_chatgpt/stable-diffusion-v1-5/v1-5-pruned.safetensors ~/stable-diffusion-webui/models/Stable-diffusion/v1-5-pruned.safetensors
mkdir ~/stable-diffusion-webui/models/Lora
cp -r ~/diffusers/examples/text_to_image/finetune/lora/pokemon/* ~/stable-diffusion-webui/models/Lora/
  • 1
  • 2
  • 3

执行下面代码,即可完成部署。

./webui.sh --no-download-sd-model --xformers --no-gradio-queue
  • 1

报错:

RuntimeError: Couldn’t install gfpgan.

解决办法:

python -m pip install https://github.com/TencentARC/GFPGAN/archive/8d2447a2d918f8eba5a4a01463fd48e45126a379.zip --prefer-binary --user
  • 1

报错:

ERROR: No matching distribution found for tb-nightly

解决:阿里源没有tb-nightly这个包,更换成阿里源即可。

pip config set global.index-url https://mirrors.aliyun.com/pypi/simple
  • 1

在这里插入图片描述

参考:
https://huggingface.co/blog/lora
https://huggingface.co/blog/zh/lora
https://github.com/AUTOMATIC1111/stable-diffusion-webui

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小丑西瓜9/article/detail/574398
推荐阅读
相关标签
  

闽ICP备14008679号