当前位置:   article > 正文

[转载]LFSR的工作原理以及LFSR在CRC上的应用_crc lfsr

crc lfsr

LFSR+CRC

LFSR(Linear feedback shift register):线性反馈移位寄存器

CRC(cyclic redundancy check):循环冗余校验码

 

 LFSR

线性反馈移位寄存器(LFSR)是内测试电路中最基本的标准模块结构,既用作伪随机测试码产生器,也作为压缩测试结果数据的特征分析器。

一个n阶的LFSR由n个触发器和若干个异或门组成。在实际应用当中,主要用到两种类型的LFSR,即异或门外接线性反馈移位寄存器(IE型LFSR,图1)和异或门内接线性反馈移位寄存器(EE型LFSR,图2)。其中g0 g1 g2 gn为’0’或’1’, Q1 Q2 Q3 Qn为LFSR的输出,M(x)是输入的码字多项式,如M(x)=x4+ x1+ 1,表示输入端的输入顺序为11001,同样,LFSR的结构也可以表示为多项式G(x),称为生成多项式:

G(x)= gn*xn+ …+g1*x1+ g0;



图1 IE型LFSR

 

 

图2 EE型LFSR

以EE型LFSR为例来分析LFSR的工作原理以应用,参照有趣的线性反馈移位寄存器(LFSR) - 与非网的博文,并对一些地方加以说明。

以n  = 3 来做个例子,具体的电路图如图3所示:

                           

图3 LFSR的电路结构

假设开始的时候(D2,D1,D0 ) = (0,0,1),那么每过一个时钟周期会进行跳变一次,可以看到具体的跳变如图4所示:

                    

图4 LFSR的输出跳变图

然后我们可以看到这个计数器循环起来了,无论进入那样一个状态除了0之外,都可以循环着回来,其实这里就相当于了一个3bit的伪随机数,很有意思,不是所有的多项式都有这个特性,我们现在在从数学上面来看看这个问题,其实最上面的电路是可以看成是一个除法电路,在Galois域的一个除法电路。现在假设的是R(x)是寄存器中剩余的数据,M(x)是输入的码字多项式,然后数学公式可以表示成:

 

然后分别计算出了M(x)的各种情况,

  

 

对于这个部分的计算我开始走进了误区,因为开始我把这的除法当作二进制除法来算了,所以一直没得到正确的结果,后来我明白了这的除法是模二的除法,在LFSR的结果中,多项式中的“+”都是模2加,就是异或运算,所以是没有进位的概念;同样,这里的除法秀的也是模2除法,即除法过程中用到的减法是模2减法,是不会产生加法进位和减法借位的运算,所以在进行模2除法时,只要部分余数首位为1,便可上商1,否则上商0,然后按照模2减法求得余数,当被除数被除完时,最后得到比除数少一位的余数。

这里用一个例子说明一下,比如M(x)=x7时,R(x)=1;模2的计算公式如下:

 

所以这里一定要区别模2和二进制数之间的运算的区别。

M(x)和R(x)到底是什么意义呢?

比如M(x)=1时,R(x)=1,指的就是当M(x)输入一个1时,这时的R(x)为1,即寄存器剩余的数为001,即Q1=1,Q2=0,Q3=0。

又M(x)=x时,R(x)=x,指的就是当M(x)顺序输入1,0时,这时的R(x)为x,即寄存器剩余的数为010,即Q1=0,Q2=1,Q3=0。

同理,可以知道,当M(x)=x6时,R(x)=x2+1,指的就是当M(x)顺序输入1,0,0,0,0,0,0时,这时的R(x)为x2+1,即寄存器剩余的数为010,即Q1=1,Q2=0,Q3=1。

可以看出,当第一个时钟时输入端输入一个1时,以后保持输入端为0,则随着时钟的到来,输入码字多项式就是按照1,x,x2,x3,x4,x5,x6,x7,…,xn这样的顺序发展着,观察前六个输入的R(x)分别对应的输出为:001,010,100,011,101,111,101,111,刚好为除去000的其他七个状态,当M(x)为x7时,输出又回来001,所以输出一直这样循环下去,因此LFSR可以用来BIST的伪随机测试码产生器。

 CRC参考博文http://blog.sina.com.cn/s/blog_468e65190100cxq3.html

循环冗余校验码(CRC)的基本原理是:在K位信息码后再拼接R位的校验码,整个编码长度为N位,因此,这种编码又叫(N,K)码。对于一个给定的(N,K)码,可以证明存在一个最高次幂为N-K=R的多项式G(x)可以使整个编码被除余数为0。根据G(x)可以生成K位信息的校验码,而G(x)叫做这个CRC码的生成多项式。 校验码的具体生成过程为:假设发送信息用信息多项式C(X)表示,将C(x)左移R位,则可表示成C(x)*2的R次方,这样C(x)的右边就会空出R位,这就是校验码的位置。通过C(x)*2的R次方除以生成多项式G(x)得到的余数就是校验码。

通过CRC的生成原理知道CRC的检验码生成是通过除法得到,由此联想到可以通过LFSR来产生校验码。

假设原信息码子多项式为

 

生成多项式为

  

 

那么CRC的码字为

 

 ,使用用LFSR电路来进行实现,将M(x)向左移r位在电路中的意义即为输入完信息码后再输入r个0,所以在电路上的表现就如图5所示。

 

图5 使用LFSR来产生CRE校验码

将这个时刻产生的寄存器输入添加到原信息码的后边就进行完了CRC编码,同样接收端可以使用LFSR来进行CRC检验

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小丑西瓜9/article/detail/582917
推荐阅读
相关标签
  

闽ICP备14008679号