当前位置:   article > 正文

HuggingFace 模型离线使用最佳方法!_huggingface上的模型和数据如何离线安装使用

huggingface上的模型和数据如何离线安装使用

以:Helsinki-NLP/opus-mt-en-zh (translation)模型为例:

如图,假设我们的运行环境基于python,那么我们通常只需要以下文件:

"config.json",
"pytorch_model.bin",
"tokenizer_config.json",
"vocab.json",
"source.spm",
"target.spm" 

其余文件如:rust,我们并不需要下载, 不使用tesorflow ,tf_model.h5也不需下载/

huggingface 官方提供以下几种下载方式:

git lfs install

git clone https://huggingface.co/Helsinki-NLP/opus-mt-en-zh

# If you want to clone without large files - just their pointers
GIT_LFS_SKIP_SMUDGE=1 git clone https://huggingface.co/Helsinki-NLP/opus-mt-en-zh

有完全克隆库,也有只克隆指针文件,但都无法根据我们的语言需求指定下载我们需要的部分文件:

所以本文推荐使用以下代码进行模型下载:

  1. import requests
  2. import os
  3. def download_file(url, dest_folder, file_name):
  4. """
  5. 下载文件并保存到指定的文件夹中。
  6. """
  7. response = requests.get(url, allow_redirects=True)
  8. if response.status_code == 200:
  9. with open(os.path.join(dest_folder, file_name), 'wb') as file:
  10. file.write(response.content)
  11. else:
  12. print(f"Failed to download {file_name}. Status code: {response.status_code}")
  13. def download_model_files(model_name):
  14. """
  15. 根据模型名称下载模型文件。
  16. """
  17. # 文件列表
  18. files_to_download = [
  19. "config.json",
  20. "pytorch_model.bin",
  21. "tokenizer_config.json",
  22. "vocab.json",
  23. "source.spm",
  24. "target.spm" # 如果模型不使用SentencePiece,这两个文件可能不需要
  25. ]
  26. # 创建模型文件夹
  27. model_folder = model_name.split('/')[-1] # 从模型名称中获取文件夹名称
  28. if not os.path.exists(model_folder):
  29. os.makedirs(model_folder)
  30. # 构建下载链接并下载文件
  31. base_url = f"https://huggingface.co/{model_name}/resolve/main/"
  32. for file_name in files_to_download:
  33. download_url = base_url + file_name
  34. print(f"Downloading {file_name}...")
  35. download_file(download_url, model_folder, file_name)
  36. # 示例使用
  37. model_name = "Helsinki-NLP/opus-mt-zh-en"
  38. download_model_files(model_name)

如果需要增添模型文件,可在文件列表进行修改。

同时:当我们使用:

pipeline 本地运行模型时,虽然会下载python_model, 但是仍需要联网访问config.json不能实现离线运行,所以,当使用本文上述下载代码完成模型的下载后:

运行以下案例代码:

  1. from transformers import pipeline, AutoTokenizer
  2. import os
  3. os.environ['TRANSFORMERS_OFFLINE']="1"
  4. # 示例文本列表
  5. texts_to_translate = [
  6. "你好",
  7. "你好啊",
  8. # 添加更多文本以确保总token数超过400
  9. ]
  10. # 指定模型的本地路径
  11. model_name = "./opus-mt-zh-en" # 请替换为实际路径
  12. # 创建翻译管道,指定本地模型路径
  13. pipe = pipeline("translation", model=model_name)
  14. # 获取tokenizer,指定本地模型路径
  15. tokenizer = AutoTokenizer.from_pretrained(model_name)
  16. result = pipe(texts_to_translate)
  17. print(result)

建议保留:

os.environ['TRANSFORMERS_OFFLINE']="1",放弃向huggingface联网访问。

结果如下:

  1. 2024-03-29 15:57:52.211565: I tensorflow/core/util/port.cc:113] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
  2. 2024-03-29 15:57:53.251227: I tensorflow/core/util/port.cc:113] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
  3. [{'translation_text': 'Hello.'}, {'translation_text': 'Hello.'}]

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小丑西瓜9/article/detail/599836
推荐阅读
相关标签
  

闽ICP备14008679号