赞
踩
BPE(Byte Pair Encoding)是一种基于统计的无监督分词算法,常用于自然语言处理任务中,如机器翻译、文本生成等。BPE算法通过将原始文本逐步拆分为子词或字符,从而实现分词的目的。
以下是BPE分词算法的详细说明:
数据预处理: BPE算法首先对输入的训练语料进行预处理,将每个词按字符切分为序列,加上特殊符号(如开始符号和结束符号)。
构建词表: BPE算法通过统计训练语料中字符或子词的频率来构建词表。初始时,将训练语料中的字符或子词作为词表中的初始词汇。
计算频率: 统计训练语料中字符或子词的出现频率,并按照频率排序。
合并操作: 选择最频繁出现的一对相邻字符或子词进行合并,形成一个新的字符或子词,并更新词表和频率统计。
重复合并操作: 重复进行合并操作,直到达到预设的合并次数或无法再合并为止。
分词: 使用最终的词表,将输入文本进行分词。分词时,优先匹配较长的子词,当无法继续匹配时,再匹配较短的子词。
恢复原始文本: 将分词结果中的特殊符号去除,并将字符或子词连接起来,恢复为原始的文本形式。
BPE分词算法的优点是可以自动构建词表,并且能够处理未登录词(Out-of-Vocabulary,OOV)问题。它能够灵活地识别和生成复杂的词组,适用于不同领域和语种的文本处理任务。
以下是一个使用Python实现BPE分词算法的示例代码:
- from collections import defaultdict
-
- def learn_bpe(data, num_merges):
- # 初始化词表,将每个字符作为初始词汇
- vocab = defaultdict(int)
- for word in data:
- for char in word:
- vocab[char] += 1
-
- # 进行合并操作
- merges = []
- for _ in range(num_merges):
- # 统计词频
- pairs = defaultdict(int)
- for word in data:
- symbols = word.split()
- for i in range(len(symbols)-1):
- pairs[symbols[i],symbols[i+1]] += 1
-
- # 找到最频繁的一对相邻字符或子词
- best = max(pairs, key=pairs.get)
- merges.append(best)
-
- # 更新词表
- new_vocab = defaultdict(int)
- for word in data:
- # 合并最频繁的一对相邻字符或子词
- new_word = word.replace(' '.join(best), ''.join(best))
- new_vocab[new_word] += 1
- vocab = new_vocab
-
- return merges, vocab
-
- def segment_text(text, merges):
- # 恢复分词结果
- segments = []
- for word in text.split():
- for merge in merges:
- if merge in word:
- word = word.replace(merge, ' '.join(merge))
- segments.extend(word.split())
-
- return segments
-
- # 示例使用
- data = ["low", "lower", "newest", "widest", "special", "specials"]
- merges, vocab = learn_bpe(data, 5)
- print("Merges:", merges)
- print("Vocabulary:", dict(vocab))
-
- text = "lowest specials"
- segments = segment_text(text, merges)
- print("Segments:", segments)
c++实现:
- #include <iostream>
- #include <unordered_map>
- #include <vector>
- #include <algorithm>
-
- std::unordered_map<std::string, int> learn_bpe(const std::vector<std::string>& data, int num_merges) {
- std::unordered_map<std::string, int> vocab;
- for (const std::string& word : data) {
- for (char c : word) {
- std::string charStr(1, c);
- vocab[charStr]++;
- }
- }
-
- std::unordered_map<std::pair<std::string, std::string>, int> pairs;
- for (const std::string& word : data) {
- std::vector<std::string> symbols;
- size_t len = word.length();
- for (size_t i = 0; i < len - 1; ++i) {
- std::string sym = word.substr(i, 2);
- pairs[std::make_pair(sym.substr(0, 1), sym.substr(1, 1))]++;
- }
- }
-
- std::vector<std::pair<std::string, std::string>> merges;
- for (int i = 0; i < num_merges; ++i) {
- auto best = std::max_element(pairs.begin(), pairs.end(),
- [](const auto& a, const auto& b) {
- return a.second < b.second;
- });
-
- std::pair<std::string, std::string> merge = best->first;
- merges.push_back(merge);
-
- std::unordered_map<std::string, int> new_vocab;
- for (const std::string& word : data) {
- std::string new_word = word;
- size_t index = 0;
- while ((index = new_word.find(merge.first + merge.second, index)) != std::string::npos) {
- new_word.replace(index, 2, merge.first + merge.second);
- index += merge.first.length();
- }
- new_vocab[new_word]++;
- }
- vocab = new_vocab;
-
- pairs.erase(best);
- }
-
- return vocab;
- }
-
- std::vector<std::string> segment_text(const std::string& text, const std::vector<std::pair<std::string, std::string>>& merges) {
- std::vector<std::string> segments;
- std::string word = text;
- size_t len = merges.size();
- for (size_t i = 0; i < len; ++i) {
- const auto& merge = merges[i];
- size_t index = 0;
- while ((index = word.find(merge.first + merge.second, index)) != std::string::npos) {
- word.replace(index, 2, merge.first + " " + merge.second);
- index += merge.first.length() + 1;
- }
- }
-
- size_t startIndex = 0;
- size_t endIndex = word.find(' ');
- while (endIndex != std::string::npos) {
- segments.push_back(word.substr(startIndex, endIndex - startIndex));
- startIndex = endIndex + 1;
- endIndex = word.find(' ', startIndex);
- }
- segments.push_back(word.substr(startIndex));
-
- return segments;
- }
-
- int main() {
- std::vector<std::string> data = {"low", "lower", "newest", "widest", "special", "specials"};
- int num_merges = 5;
- std::unordered_map<std::string, int> vocab = learn_bpe(data, num_merges);
-
- std::cout << "Vocabulary:" << std::endl;
- for (const auto& entry : vocab) {
- std::cout << entry.first << ": " << entry.second << std::endl;
- }
-
- std::string text = "lowest specials";
- std::vector<std::pair<std::string, std::string>> merges;
- for (int i = 0; i < num_merges; ++i) {
- merges.push_back(std::make_pair("", ""));
- }
- std::vector<std::string> segments = segment_text(text, merges);
-
- std::cout << "Segments:" << std::endl;
- for (const std::string& segment : segments) {
- std::cout << segment << std::endl;
- }
-
- return 0;
- }
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。