当前位置:   article > 正文

AI绘画专栏stablediffusion之SD插件Sadtalk大全Comfyui (48)_sd插件下载

sd插件下载

1.是什么

所谓的插件是通过下载集成的方式,使得SD在绘画过程中通过API的调用在参数内通过页面设置达到二次渲染出图的过程

SD启动器2024最新版本下载
链接:https://pan.quark.cn/s/eea6375642fd

最全的放大模型webui和comfyui通用ESRGAN
链接:https://pan.quark.cn/s/db047c924f9c

我用夸克网盘分2024stablediffusion插件大全
链接:https://pan.quark.cn/s/b738a99f6f72

我用夸克网盘分Comfyui工作流4月更新
链接:https://pan.quark.cn/s/043adee22d23

2.怎么玩

复制到从网址安装

点击安装即可

安装完重启生效

升级版本

3.在哪下

https://gitcode.net/rubble7343/sd-webui-extensions/raw/master/index.json

下载插件的N种方式

1.直接下载zip安装包

2.git clone

3.从网址安装

4.插件列表安装

备份插件列表

https://github.com/Gerschel/sd_web_ui_preset_utils.git

4.报错怎么办

RuntimeError: Expected all tensors to be on the same device, but found at least two devices, cpu and cuda:0! (when checking argument for argument weight in method wrapper_CUDA___slow_conv2d_forward)

Console logs

代码语言:javascript

复制

  1. Startup time: 46.8s (prepare environment: 25.9s, import torch: 4.7s, import gradio: 1.0s, setup paths: 0.5s, initialize shared: 0.2s, other imports: 0.5s, setup codeformer: 0.3s, load scripts: 8.4s, create ui: 4.1s, gradio launch: 0.6s, app_started_callback: 0.5s).
  2. Loading VAE weights specified in settings: E:\sd-webui-aki\sd-webui-aki-v4\models\VAE\vae-ft-mse-840000-ema-pruned.safetensors
  3. Applying attention optimization: xformers... done.
  4. Model loaded in 6.5s (load weights from disk: 0.6s, create model: 0.9s, apply weights to model: 4.3s, load VAE: 0.4s, calculate empty prompt: 0.1s).
  5. refresh_ui
  6. Restoring base VAE
  7. Applying attention optimization: xformers... done.
  8. VAE weights loaded.
  9. 2023-11-25 18:37:19,315 - ControlNet - INFO - Loading model: control_v11f1p_sd15_depth [cfd03158]
  10. 2023-11-25 18:37:19,995 - ControlNet - INFO - Loaded state_dict from [E:\sd-webui-aki\sd-webui-aki-v4\models\ControlNet\control_v11f1p_sd15_depth.pth]
  11. 2023-11-25 18:37:19,996 - ControlNet - INFO - controlnet_default_config
  12. 2023-11-25 18:37:22,842 - ControlNet - INFO - ControlNet model control_v11f1p_sd15_depth [cfd03158] loaded.
  13. 2023-11-25 18:37:23,008 - ControlNet - INFO - Loading preprocessor: depth
  14. 2023-11-25 18:37:23,010 - ControlNet - INFO - preprocessor resolution = 896
  15. 2023-11-25 18:37:27,343 - ControlNet - INFO - ControlNet Hooked - Time = 8.458001852035522
  16. 0: 640x384 1 face, 78.0ms
  17. Speed: 4.0ms preprocess, 78.0ms inference, 29.0ms postprocess per image at shape (1, 3, 640, 384)
  18. 2023-11-25 18:37:50,189 - ControlNet - INFO - Loading model from cache: control_v11f1p_sd15_depth [cfd03158]
  19. 2023-11-25 18:37:50,192 - ControlNet - INFO - Loading preprocessor: depth
  20. 2023-11-25 18:37:50,192 - ControlNet - INFO - preprocessor resolution = 896
  21. 2023-11-25 18:37:50,279 - ControlNet - INFO - ControlNet Hooked - Time = 0.22900152206420898
  22. 2023-11-25 18:38:30,791 - AnimateDiff - INFO - AnimateDiff process start.
  23. 2023-11-25 18:38:30,791 - AnimateDiff - INFO - Loading motion module mm_sd_v15_v2.ckpt from E:\sd-webui-aki\sd-webui-aki-v4\extensions\sd-webui-animatediff\model\mm_sd_v15_v2.ckpt
  24. 2023-11-25 18:38:31,574 - AnimateDiff - INFO - Guessed mm_sd_v15_v2.ckpt architecture: MotionModuleType.AnimateDiffV2
  25. 2023-11-25 18:38:33,296 - AnimateDiff - WARNING - Missing keys <All keys matched successfully>
  26. 2023-11-25 18:38:34,243 - AnimateDiff - INFO - Injecting motion module mm_sd_v15_v2.ckpt into SD1.5 UNet middle block.
  27. 2023-11-25 18:38:34,245 - AnimateDiff - INFO - Injecting motion module mm_sd_v15_v2.ckpt into SD1.5 UNet input blocks.
  28. 2023-11-25 18:38:34,245 - AnimateDiff - INFO - Injecting motion module mm_sd_v15_v2.ckpt into SD1.5 UNet output blocks.
  29. 2023-11-25 18:38:34,246 - AnimateDiff - INFO - Setting DDIM alpha.
  30. 2023-11-25 18:38:34,254 - AnimateDiff - INFO - Injection finished.
  31. 2023-11-25 18:38:34,254 - AnimateDiff - INFO - Hacking loral to support motion lora
  32. 2023-11-25 18:38:34,254 - AnimateDiff - INFO - Hacking CFGDenoiser forward function.
  33. 2023-11-25 18:38:34,254 - AnimateDiff - INFO - Hacking ControlNet.
  34. *** Error completing request
  35. *** Arguments: ('task(8jna2axn6nwg2d4)', '1 sex girl, big breasts, solo, high heels, skirt, thigh strap, squatting, black footwear, long hair, closed eyes, multicolored hair, red hair, black shirt, sleeveless, black skirt, full body, shirt, lips, brown hair, black hair, sleeveless shirt, bare shoulders, crop top, midriff, grey background, simple background, ', 'bad hands, normal quality, ((monochrome)), ((grayscale)), ((strabismus)), ng_deepnegative_v1_75t, (bad-hands-5:1.3), (worst quality:2), (low quality:2), (normal quality:2), lowres, bad anatomy, bad_prompt, badhandv4, EasyNegative, ', [], 20, 'Euler a', 1, 1, 7, 1600, 896, False, 0.7, 2, 'Latent', 0, 0, 0, 'Use same checkpoint', 'Use same sampler', '', '', [], <gradio.routes.Request object at 0x0000024A8CCB4670>, 0, False, '', 0.8, -1, False, -1, 0, 0, 0, True, False, {'ad_model': 'face_yolov8n.pt', 'ad_prompt': '', 'ad_negative_prompt': '', 'ad_confidence': 0.3, 'ad_mask_k_largest': 0, 'ad_mask_min_ratio': 0, 'ad_mask_max_ratio': 1, 'ad_x_offset': 0, 'ad_y_offset': 0, 'ad_dilate_erode': 4, 'ad_mask_merge_invert': 'None', 'ad_mask_blur': 4, 'ad_denoising_strength': 0.4, 'ad_inpaint_only_masked': True, 'ad_inpaint_only_masked_padding': 32, 'ad_use_inpaint_width_height': False, 'ad_inpaint_width': 512, 'ad_inpaint_height': 512, 'ad_use_steps': False, 'ad_steps': 28, 'ad_use_cfg_scale': False, 'ad_cfg_scale': 7, 'ad_use_checkpoint': False, 'ad_checkpoint': 'Use same checkpoint', 'ad_use_vae': False, 'ad_vae': 'Use same VAE', 'ad_use_sampler': False, 'ad_sampler': 'Euler a', 'ad_use_noise_multiplier': False, 'ad_noise_multiplier': 1, 'ad_use_clip_skip': False, 'ad_clip_skip': 1, 'ad_restore_face': False, 'ad_controlnet_model': 'None', 'ad_controlnet_module': 'None', 'ad_controlnet_weight': 1, 'ad_controlnet_guidance_start': 0, 'ad_controlnet_guidance_end': 1, 'is_api': ()}, {'ad_model': 'None', 'ad_prompt': '', 'ad_negative_prompt': '', 'ad_confidence': 0.3, 'ad_mask_k_largest': 0, 'ad_mask_min_ratio': 0, 'ad_mask_max_ratio': 1, 'ad_x_offset': 0, 'ad_y_offset': 0, 'ad_dilate_erode': 4, 'ad_mask_merge_invert': 'None', 'ad_mask_blur': 4, 'ad_denoising_strength': 0.4, 'ad_inpaint_only_masked': True, 'ad_inpaint_only_masked_padding': 32, 'ad_use_inpaint_width_height': False, 'ad_inpaint_width': 512, 'ad_inpaint_height': 512, 'ad_use_steps': False, 'ad_steps': 28, 'ad_use_cfg_scale': False, 'ad_cfg_scale': 7, 'ad_use_checkpoint': False, 'ad_checkpoint': 'Use same checkpoint', 'ad_use_vae': False, 'ad_vae': 'Use same VAE', 'ad_use_sampler': False, 'ad_sampler': 'Euler a', 'ad_use_noise_multiplier': False, 'ad_noise_multiplier': 1, 'ad_use_clip_skip': False, 'ad_clip_skip': 1, 'ad_restore_face': False, 'ad_controlnet_model': 'None', 'ad_controlnet_module': 'None', 'ad_controlnet_weight': 1, 'ad_controlnet_guidance_start': 0, 'ad_controlnet_guidance_end': 1, 'is_api': ()}, False, 'keyword prompt', 'keyword1, keyword2', 'None', 'textual inversion first', 'None', '0.7', 'None', False, 1.6, 0.97, 0.4, 0, 20, 0, 12, '', True, False, False, False, 512, False, True, ['Face'], False, '{\n "face_detector": "RetinaFace",\n "rules": {\n "then": {\n "face_processor": "img2img",\n "mask_generator": {\n "name": "BiSeNet",\n "params": {\n "fallback_ratio": 0.1\n }\n }\n }\n }\n}', 'None', 40, <animatediff_utils.py.AnimateDiffProcess object at 0x0000024A8CC58940>, False, False, 'LoRA', 'None', 1, 1, 'LoRA', 'None', 1, 1, 'LoRA', 'None', 1, 1, 'LoRA', 'None', 1, 1, 'LoRA', 'None', 1, 1, None, 'Refresh models', <scripts.animatediff_ui.AnimateDiffProcess object at 0x0000024A3BD73F10>, UiControlNetUnit(enabled=True, module='depth_midas', model='control_v11f1p_sd15_depth [cfd03158]', weight=1, image={'image': array([[[183, 187, 189],
  36. *** [183, 187, 189],
  37. *** [183, 187, 189],
  38. *** ...,
  39. *** [185, 189, 191],
  40. *** [185, 189, 191],
  41. *** [185, 189, 191]],
  42. ***
  43. *** [[183, 187, 189],
  44. *** [183, 187, 189],
  45. *** [183, 187, 189],
  46. *** ...,
  47. *** [185, 189, 191],
  48. *** [185, 189, 191],
  49. *** [185, 189, 191]],
  50. ***
  51. *** [[183, 187, 189],
  52. *** [183, 187, 189],
  53. *** [183, 187, 189],
  54. *** ...,
  55. *** [185, 189, 191],
  56. *** [185, 189, 191],
  57. *** [185, 189, 191]],
  58. ***
  59. *** ...,
  60. ***
  61. *** [[223, 224, 227],
  62. *** [223, 224, 227],
  63. *** [223, 224, 227],
  64. *** ...,
  65. *** [227, 227, 227],
  66. *** [227, 227, 227],
  67. *** [227, 227, 227]],
  68. ***
  69. *** [[223, 224, 227],
  70. *** [223, 224, 227],
  71. *** [223, 224, 227],
  72. *** ...,
  73. *** [227, 227, 227],
  74. *** [227, 227, 227],
  75. *** [227, 227, 227]],
  76. ***
  77. *** [[223, 224, 227],
  78. *** [223, 224, 227],
  79. *** [223, 224, 227],
  80. *** ...,
  81. *** [227, 227, 227],
  82. *** [227, 227, 227],
  83. *** [227, 227, 227]]], dtype=uint8), 'mask': array([[[0, 0, 0],
  84. *** [0, 0, 0],
  85. *** [0, 0, 0],
  86. *** ...,
  87. *** [0, 0, 0],
  88. *** [0, 0, 0],
  89. *** [0, 0, 0]],
  90. ***
  91. *** [[0, 0, 0],
  92. *** [0, 0, 0],
  93. *** [0, 0, 0],
  94. *** ...,
  95. *** [0, 0, 0],
  96. *** [0, 0, 0],
  97. *** [0, 0, 0]],
  98. ***
  99. *** [[0, 0, 0],
  100. *** [0, 0, 0],
  101. *** [0, 0, 0],
  102. *** ...,
  103. *** [0, 0, 0],
  104. *** [0, 0, 0],
  105. *** [0, 0, 0]],
  106. ***
  107. *** ...,
  108. ***
  109. *** [[0, 0, 0],
  110. *** [0, 0, 0],
  111. *** [0, 0, 0],
  112. *** ...,
  113. *** [0, 0, 0],
  114. *** [0, 0, 0],
  115. *** [0, 0, 0]],
  116. ***
  117. *** [[0, 0, 0],
  118. *** [0, 0, 0],
  119. *** [0, 0, 0],
  120. *** ...,
  121. *** [0, 0, 0],
  122. *** [0, 0, 0],
  123. *** [0, 0, 0]],
  124. ***
  125. *** [[0, 0, 0],
  126. *** [0, 0, 0],
  127. *** [0, 0, 0],
  128. *** ...,
  129. *** [0, 0, 0],
  130. *** [0, 0, 0],
  131. *** [0, 0, 0]]], dtype=uint8)}, resize_mode='Crop and Resize', low_vram=False, processor_res=512, threshold_a=-1, threshold_b=-1, guidance_start=0, guidance_end=1, pixel_perfect=True, control_mode='Balanced', save_detected_map=True), UiControlNetUnit(enabled=False, module='none', model='None', weight=1, image=None, resize_mode='Crop and Resize', low_vram=False, processor_res=512, threshold_a=64, threshold_b=64, guidance_start=0, guidance_end=1, pixel_perfect=False, control_mode='Balanced', save_detected_map=True), UiControlNetUnit(enabled=False, module='none', model='None', weight=1, image=None, resize_mode='Crop and Resize', low_vram=False, processor_res=512, threshold_a=64, threshold_b=64, guidance_start=0, guidance_end=1, pixel_perfect=False, control_mode='Balanced', save_detected_map=True), False, '', 0.5, True, False, '', 'Lerp', False, False, 1, 0.15, False, 'OUT', ['OUT'], 5, 0, 'Bilinear', False, 'Bilinear', False, 'Lerp', '', '', False, False, None, True, '
    声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小丑西瓜9/article/detail/658235
    推荐阅读
    相关标签