当前位置:   article > 正文

Python中的图像处理(第十一章)Python图像锐化及边缘检测(2)_numpy工具包定义prewitt算子,并用该算子对灰度图像“lena.jpg”进行图像锐化提取

numpy工具包定义prewitt算子,并用该算子对灰度图像“lena.jpg”进行图像锐化提取

Python中的图像处理(第十一章)Python图像锐化及边缘检测(2)

前言

随着人工智能研究的不断兴起,Python的应用也在不断上升,由于Python语言的简洁性、易读性以及可扩展性,特别是在开源工具和深度学习方向中各种神经网络的应用,使得Python已经成为最受欢迎的程序设计语言之一。由于完全开源,加上简单易学、易读、易维护、以及其可移植性、解释性、可扩展性、可扩充性、可嵌入性:丰富的库等等,自己在学习与工作中也时常接触到Python,这个系列文章的话主要就是介绍一些在Python中常用一些例程进行仿真演示!

本系列文章主要参考杨秀章老师分享的代码资源,杨老师博客主页是Eastmount,杨老师兴趣广泛,不愧是令人膜拜的大佬,他过成了我理想中的样子,希望以后有机会可以向他请教学习交流。

因为自己是做图像语音出身的,所以结合《Python中的图像处理》,学习一下Python相关,OpenCV已经在Python上进行了多个版本的维护,所以相比VS,Python的环境配置相对简单,缺什么库直接安装即可。本系列文章例程都是基于Python3.8的环境下进行,所以大家在进行借鉴的时候建议最好在3.8.0版本以上进行仿真。本文继续来对本书第十一章的后4个例程进行介绍。

一. Python准备

如何确定自己安装好了python

win+R输入cmd进入命令行程序
在这里插入图片描述
点击“确定”
在这里插入图片描述
输入:python,回车
在这里插入图片描述
看到Python相关的版本信息,说明Python安装成功。

二. Python仿真

(1)新建一个chapter11_06.py文件,输入以下代码,图片也放在与.py文件同级文件夹下

#encoding:utf-8
#By:Eastmount CSDN 2021-07-19
import cv2  
import numpy as np  
import matplotlib.pyplot as plt
 
#读取图像
img = cv2.imread('lena.png')
lenna_img = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)

#灰度化处理图像
grayImage = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
 
# Scharr算子
x = cv2.Scharr(grayImage, cv2.CV_32F, 1, 0) #X方向
y = cv2.Scharr(grayImage, cv2.CV_32F, 0, 1) #Y方向
absX = cv2.convertScaleAbs(x)       
absY = cv2.convertScaleAbs(y)
Scharr = cv2.addWeighted(absX, 0.5, absY, 0.5, 0)

#用来正常显示中文标签
plt.rcParams['font.sans-serif']=['SimHei']

#显示图形
titles = [u'原始图像', u'Scharr算子']  
images = [lenna_img, Scharr]  
for i in range(2):  
   plt.subplot(1,2,i+1), plt.imshow(images[i], 'gray')  
   plt.title(titles[i])  
   plt.xticks([]),plt.yticks([])  
plt.show()

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32

保存.py文件
输入eixt()退出python,输入命令行进入工程文件目录
在这里插入图片描述
输入以下命令,跑起工程

python chapter11_06.py
  • 1

在这里插入图片描述

没有报错,直接弹出图片,运行成功!
在这里插入图片描述

(2)新建一个chapter11_07.py文件,输入以下代码,图片也放在与.py文件同级文件夹下

#encoding:utf-8
#By:Eastmount CSDN 2021-07-19
import cv2  
import numpy as np  
import matplotlib.pyplot as plt
 
#读取图像
img = cv2.imread('lena.png')
lenna_img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

#灰度化处理图像
grayImage = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

#高斯滤波降噪
gaussian = cv2.GaussianBlur(grayImage, (3,3), 0)
 
#Canny算子
Canny = cv2.Canny(gaussian, 50, 150) 

#用来正常显示中文标签
plt.rcParams['font.sans-serif']=['SimHei']

#显示图形
titles = [u'原始图像', u'Canny算子']  
images = [lenna_img, Canny]  
for i in range(2):  
   plt.subplot(1,2,i+1), plt.imshow(images[i], 'gray')  
   plt.title(titles[i])  
   plt.xticks([]),plt.yticks([])  
plt.show()

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31

保存.py文件输入以下命令,跑起工程

python chapter11_07.py
  • 1

没有报错,直接弹出图片,运行成功!
在这里插入图片描述

(3)新建一个chapter11_08.py文件,输入以下代码,图片也放在与.py文件同级文件夹下

#encoding:utf-8
#By:Eastmount CSDN 2021-07-19
import cv2  
import numpy as np  
import matplotlib.pyplot as plt
 
#读取图像
img = cv2.imread('lena.png')
lenna_img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

#灰度化处理图像
grayImage = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

#先通过高斯滤波降噪
gaussian = cv2.GaussianBlur(grayImage, (3,3), 0)
 
#再通过拉普拉斯算子做边缘检测
dst = cv2.Laplacian(gaussian, cv2.CV_16S, ksize = 3)
LOG = cv2.convertScaleAbs(dst)

#用来正常显示中文标签
plt.rcParams['font.sans-serif']=['SimHei']

#显示图形
titles = [u'原始图像', u'LOG算子']  
images = [lenna_img, LOG]  
for i in range(2):  
   plt.subplot(1,2,i+1), plt.imshow(images[i], 'gray')  
   plt.title(titles[i])  
   plt.xticks([]),plt.yticks([])  
plt.show()

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32

保存.py文件输入以下命令,跑起工程

python chapter11_08.py
  • 1

在这里插入图片描述
没有报错,直接弹出图片,运行成功!
在这里插入图片描述

(4)新建一个chapter11_09.py文件,输入以下代码,图片也放在与.py文件同级文件夹下

#encoding:utf-8
#By:Eastmount CSDN 2021-07-19
import cv2  
import numpy as np  
import matplotlib.pyplot as plt

#读取图像
img = cv2.imread('lena.png')
lenna_img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

#灰度化处理图像
grayImage = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

#高斯滤波
gaussianBlur = cv2.GaussianBlur(grayImage, (3,3), 0)

#阈值处理
ret, binary = cv2.threshold(gaussianBlur, 127, 255, cv2.THRESH_BINARY)

#Roberts算子
kernelx = np.array([[-1,0],[0,1]], dtype=int)
kernely = np.array([[0,-1],[1,0]], dtype=int)
x = cv2.filter2D(binary, cv2.CV_16S, kernelx)
y = cv2.filter2D(binary, cv2.CV_16S, kernely)
absX = cv2.convertScaleAbs(x)     
absY = cv2.convertScaleAbs(y)    
Roberts = cv2.addWeighted(absX, 0.5, absY, 0.5, 0)

#Prewitt算子
kernelx = np.array([[1,1,1],[0,0,0],[-1,-1,-1]], dtype=int)
kernely = np.array([[-1,0,1],[-1,0,1],[-1,0,1]], dtype=int)
x = cv2.filter2D(binary, cv2.CV_16S, kernelx)
y = cv2.filter2D(binary, cv2.CV_16S, kernely)
absX = cv2.convertScaleAbs(x)  
absY = cv2.convertScaleAbs(y)    
Prewitt = cv2.addWeighted(absX,0.5,absY,0.5,0)

#Sobel算子
x = cv2.Sobel(binary, cv2.CV_16S, 1, 0)
y = cv2.Sobel(binary, cv2.CV_16S, 0, 1)    
absX = cv2.convertScaleAbs(x)   
absY = cv2.convertScaleAbs(y)    
Sobel = cv2.addWeighted(absX, 0.5, absY, 0.5, 0)

#拉普拉斯算法
dst = cv2.Laplacian(binary, cv2.CV_16S, ksize = 3)
Laplacian = cv2.convertScaleAbs(dst)


# Scharr算子
x = cv2.Scharr(gaussianBlur, cv2.CV_32F, 1, 0) #X方向
y = cv2.Scharr(gaussianBlur, cv2.CV_32F, 0, 1) #Y方向
absX = cv2.convertScaleAbs(x)       
absY = cv2.convertScaleAbs(y)
Scharr = cv2.addWeighted(absX, 0.5, absY, 0.5, 0)

#Canny算子
Canny = cv2.Canny(gaussianBlur, 50, 150)

#先通过高斯滤波降噪
gaussian = cv2.GaussianBlur(grayImage, (3,3), 0)
 
#再通过拉普拉斯算子做边缘检测
dst = cv2.Laplacian(gaussian, cv2.CV_16S, ksize = 3)
LOG = cv2.convertScaleAbs(dst)


#效果图
titles = ['Source Image', 'Binary Image', 'Roberts Image',
          'Prewitt Image','Sobel Image', 'Laplacian Image',
          'Scharr Image', 'Canny Image', 'LOG Image']  
images = [lenna_img, binary, Roberts,
          Prewitt, Sobel, Laplacian,
          Scharr, Canny, LOG]  
for i in np.arange(9):  
   plt.subplot(3,3,i+1),plt.imshow(images[i],'gray')  
   plt.title(titles[i])  
   plt.xticks([]),plt.yticks([])  
plt.show()  

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80

保存.py文件输入以下命令,跑起工程

python chapter11_09.py
  • 1

在这里插入图片描述
没有报错,直接弹出图片,运行成功!
在这里插入图片描述

三. 小结

本文主要介绍在Python中调用OpenCV库对图像进行边缘检测,如Scharr算子,Canny算子,拉普拉斯算子,Roberts算子,Prewitt算子,Sobel算子等。由于本书的介绍比较系统全面,所以会出一个系列文章进行全系列仿真实现,感兴趣的还是建议去原书第十一章深入学习理解,下一篇文章将继续介绍第十二章节的5例仿真实例。每天学一个Python小知识,大家一起来学习进步阿!

本系列示例主要参考杨老师GitHub源码,安利一下地址:ImageProcessing-Python(喜欢记得给个star哈!)

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小丑西瓜9/article/detail/69773?site
推荐阅读
相关标签
  

闽ICP备14008679号