当前位置:   article > 正文

【ChatGPT核心原理实战】手动求解 Transformer:分步数学示例 | Solving Transformer by Hand: A Step-by-Step Math Example_transformers chatgpt 案例

transformers chatgpt 案例

目录

手动求解 Transformer:分步数学示例

Understanding Transformers: A Step-by-Step Math Example — Part 1了解 Transformer:分步数学示例 — 第 1 部分

I understand that the transformer architecture may seem scary, and you might have encountered various explanations on…我知道变压器架构可能看起来很可怕,并且您可能遇到过关于……的各种解释。

This blog is incomplete, here is the complete version of it:该博客不完整,以下是完整版本:

Understanding Transformers from Start to End — A Step-by-Step Math Example从头到尾理解 Transformer — 一个逐步的数学示例

We will be using a simple dataset and performing numerous matrix multiplications to solve the encoder and decoder parts…我们将使用一个简单的数据集并执行大量矩阵乘法来解决编码器和解码器部分......

Inputs and Positional Encoding输入和位置编码

Step 1 (Defining the data)步骤 1(定义数据)

Step 2 (Finding the Vocab Size)第 2 步(计算词汇量)

Step 3 (Encoding and Embedding)步骤 3(编码和嵌入)

Step 4 (Positional Embedding)步骤 4(位置嵌入)

Encoder 编码器

Step 1 (Performing Single Head Attention)第 1 步(执行单头注意力)

Table of Contents 目录

Step 1 — Defining our Dataset第 1 步 - 定义我们的数据集

Step 2— Finding Vocab Size第 2 步 — 查找词汇量

Step 3 — Encoding 第 3 步 — 编码

Step 4 — Calculating Embedding第 4 步 — 计算嵌入

Step 5 — Calculating Positional Embedding第 5 步 — 计算位置嵌入

Step 6 — Concatenating Positional and Word Embeddings第 6 步 — 连接位置嵌入和词嵌入

Step 7 — Multi Head Attention第 7 步 — 多头注意力

Step 8 — Adding and Normalizing第 8 步 — 添加和规范化

Step 9 — Feed Forward Network第 9 步——前馈网络

Step 10 — Adding and Normalizing Again第 10 步 — 再次添加并标准化

Step 11 — Decoder Part第11步——解码器部分

Step 12 — Understanding Mask Multi Head Attention第 12 步 — 了解 Mask Multi Head Attention

Let’s do a simplified calculation:我们来做一个简单的计算:

Step 13 — Calculating the Predicted Word第 13 步 — 计算预测词

Important Points 要点

Conclusion 结论

Transformer Architecture explainedTransformer 架构解释

Tokenization 代币化

Embedding 嵌入

Positional encoding 位置编码

Transformer block 变压器块

Attention 注意力

The Softmax Layer Softmax 层

Post Training 岗位培训

How GPT3 Works - Visualizations and Animations

The GPT-3 Architecture, on a Napkin餐巾纸上的 GPT-3 架构

Original Diagrams 原始图表

In / Out 进出

Encoding 编码

Embedding 嵌入

Positional Encoding 位置编码

Attention (Simplified) 注意(简体)

Multi-Head Attention 多头注意力

Feed Forward 前馈

Add & Norm 添加和规范

Decoding 解码

Full Architecture 完整架构

References 参考

OpenAI GPT-3: Understanding the ArchitectureOpenAI GPT-3:了解架构

Introduction 介绍

What are Language Models?什么是语言模型?

How does language modeling work?语言建模如何工作?

OpenAI GPT-3 ArchitectureOpenAI GPT-3 架构

Why GPT-3 is so powerful?为什么GPT-3如此强大?

Use cases of GPT-3 GPT-3 的用例

Writing and translation 写作和翻译

Generating code 生成代码

Building machine learning models/code构建机器学习模型/代码

How Can We Get Our Hands on the Model?我们如何获得模型?

Limitations of OpenAI GPT-3OpenAI GPT-3 的局限性

Future of GPT-3 GPT-3 的未来

Conclusion 结论

References 参考


手动求解 Transformer:分步数学示例

I have already written a detailed blog on how transformers work using a very small sample of the dataset, which will be my best blog ever because it has elevated my profile and given me the motivation to write more. However, that blog is incomplete as it only covers 20% of the transformer architecture and contains numerous calculation errors, as pointed out by readers. After a considerable amount of time has passed since that blog, I will be revisiting the topic in this new blog.
我已经写了一篇详细的博客,介绍变压器如何使用非常小的数据集样本工作,

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小丑西瓜9/article/detail/699832
推荐阅读
相关标签
  

闽ICP备14008679号