当前位置:   article > 正文

leetcode **126. 单词接龙 II(待研究)(2020.6.7)_单词接龙 126题目

单词接龙 126题目

【题目】**126. 单词接龙 II

给定两个单词(beginWord 和 endWord)和一个字典 wordList,找出所有从 beginWord 到 endWord 的最短转换序列。转换需遵循如下规则:
每次转换只能改变一个字母。
转换过程中的中间单词必须是字典中的单词。

说明:
如果不存在这样的转换序列,返回一个空列表。
所有单词具有相同的长度。
所有单词只由小写字母组成。
字典中不存在重复的单词。
你可以假设 beginWord 和 endWord 是非空的,且二者不相同。
示例 1:

输入:
beginWord = "hit",
endWord = "cog",
wordList = ["hot","dot","dog","lot","log","cog"]

输出:
[
  ["hit","hot","dot","dog","cog"],
  ["hit","hot","lot","log","cog"]
]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

示例 2:

输入:
beginWord = "hit"
endWord = "cog"
wordList = ["hot","dot","dog","lot","log"]

输出: []

解释: endWord "cog" 不在字典中,所以不存在符合要求的转换序列。
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

【解题思路1】图 + BFS + DFS

bfs 找最短,然后 dfs 回溯找所有的解。这道题很麻烦的是构建图。

public class Solution {

    public List<List<String>> findLadders(String beginWord, String endWord, List<String> wordList) {
        // 先将 wordList 放到哈希表里,便于判断某个单词是否在 wordList 里
        Set<String> wordSet = new HashSet<>(wordList);
        List<List<String>> res = new ArrayList<>();
        if (wordSet.size() == 0 || !wordSet.contains(endWord)) {
            return res;
        }

        // 第 1 步:使用广度优先遍历得到后继结点列表 successors
        // key:字符串,value:广度优先遍历过程中 key 的后继结点列表
        Map<String, Set<String>> successors = new HashMap<>();
        boolean found = bfs(beginWord, endWord, wordSet, successors);
        if (!found) {
            return res;
        }

        // 第 2 步:基于后继结点列表 successors ,使用回溯算法得到所有最短路径列表
        Deque<String> path = new ArrayDeque<>();
        path.addLast(beginWord);
        dfs(beginWord, endWord, successors, path, res);
        return res;
    }

    private boolean bfs(String beginWord, String endWord, Set<String> wordSet,
                        Map<String, Set<String>> successors) {
        Queue<String> queue = new LinkedList<>();
        queue.offer(beginWord);

        // 记录访问过的单词
        Set<String> visited = new HashSet<>();
        visited.add(beginWord);

        boolean found = false;
        int wordLen = beginWord.length();
        // 当前层访问过的结点,当前层全部遍历完成以后,再添加到总的 visited 集合里
        Set<String> nextLevelVisited = new HashSet<>();
        while (!queue.isEmpty()) {
            int currentSize = queue.size();
            for (int i = 0; i < currentSize; i++) {
                String currentWord = queue.poll();
                char[] charArray = currentWord.toCharArray();
                for (int j = 0; j < wordLen; j++) {
                    char originChar = charArray[j];
                    for (char k = 'a'; k <= 'z'; k++) {
                        if (charArray[j] == k) {
                            continue;
                        }
                        charArray[j] = k;
                        String nextWord = new String(charArray);
                        if (wordSet.contains(nextWord)) {
                            if (!visited.contains(nextWord)) {
                                if (nextWord.equals(endWord)) {
                                    found = true;
                                }
                                nextLevelVisited.add(nextWord);
                                queue.offer(nextWord);

                                // 维护 successors 的定义
                                successors.computeIfAbsent(currentWord, a -> new HashSet<>());
                                successors.get(currentWord).add(nextWord);
                            }
                        }
                    }
                    charArray[j] = originChar;
                }
            }

            if (found) {
                break;
            }
            visited.addAll(nextLevelVisited);
            nextLevelVisited.clear();
        }
        return found;
    }

    private void dfs(String beginWord, String endWord,
                     Map<String, Set<String>> successors,
                     Deque<String> path, List<List<String>> res) {
        if (beginWord.equals(endWord)) {
            res.add(new ArrayList<>(path));
            return;
        }

        if (!successors.containsKey(beginWord)) {
            return;
        }

        Set<String> successorWords = successors.get(beginWord);
        for (String nextWord : successorWords) {
            path.addLast(nextWord);
            dfs(nextWord, endWord, successors, path, res);
            path.removeLast();
        }
    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98

【解题思路2】官方BFS题解

class Solution {
    private static final int INF = 1 << 20;
    private Map<String, Integer> wordId; // 单词到id的映射
    private ArrayList<String> idWord; // id到单词的映射
    private ArrayList<Integer>[] edges; // 图的边

    public Solution() {
        wordId = new HashMap<>();
        idWord = new ArrayList<>();
    }

    public List<List<String>> findLadders(String beginWord, String endWord, List<String> wordList) {
        int id = 0;
        // 将wordList所有单词加入wordId中 相同的只保留一个 // 并为每一个单词分配一个id
        for (String word : wordList) {
            if (!wordId.containsKey(word)) { 
                wordId.put(word, id++);
                idWord.add(word);
            }
        }
        // 若endWord不在wordList中 则无解
        if (!wordId.containsKey(endWord)) {
            return new ArrayList<>();
        }
        // 把beginWord也加入wordId中
        if (!wordId.containsKey(beginWord)) {
            wordId.put(beginWord, id++);
            idWord.add(beginWord);
        }

        // 初始化存边用的数组
        edges = new ArrayList[idWord.size()];
        for (int i = 0; i < idWord.size(); i++) {
            edges[i] = new ArrayList<>();
        }
        // 添加边
        for (int i = 0; i < idWord.size(); i++) {
            for (int j = i + 1; j < idWord.size(); j++) {
                // 若两者可以通过转换得到 则在它们间建一条无向边
                if (transformCheck(idWord.get(i), idWord.get(j))) {
                    edges[i].add(j);
                    edges[j].add(i);
                }
            }
        }

        int dest = wordId.get(endWord); // 目的ID
        List<List<String>> res = new ArrayList<>(); // 存答案
        int[] cost = new int[id]; // 到每个点的代价
        for (int i = 0; i < id; i++) {
            cost[i] = INF; // 每个点的代价初始化为无穷大
        }

        // 将起点加入队列 并将其cost设为0
        Queue<ArrayList<Integer>> q = new LinkedList<>();
        ArrayList<Integer> tmpBegin = new ArrayList<>();
        tmpBegin.add(wordId.get(beginWord));
        q.add(tmpBegin);
        cost[wordId.get(beginWord)] = 0;

        // 开始广度优先搜索
        while (!q.isEmpty()) {
            ArrayList<Integer> now = q.poll();
            int last = now.get(now.size() - 1); // 最近访问的点
            if (last == dest) { // 若该点为终点则将其存入答案res中
                ArrayList<String> tmp = new ArrayList<>();
                for (int index : now) {
                    tmp.add(idWord.get(index)); // 转换为对应的word
                }
                res.add(tmp);
            } else { // 该点不为终点 继续搜索
                for (int i = 0; i < edges[last].size(); i++) {
                    int to = edges[last].get(i);
                    // 此处<=目的在于把代价相同的不同路径全部保留下来
                    if (cost[last] + 1 <= cost[to]) {
                        cost[to] = cost[last] + 1;
                        // 把to加入路径中
                        ArrayList<Integer> tmp = new ArrayList<>(now); tmp.add(to);
                        q.add(tmp); // 把这个路径加入队列
                    }
                }
            }
        }
        return res;
    }

    // 两个字符串是否可以通过改变一个字母后相等
    boolean transformCheck(String str1, String str2) {
        int differences = 0;
        for (int i = 0; i < str1.length() && differences < 2; i++) {
            if (str1.charAt(i) != str2.charAt(i)) {
                ++differences;
            }
        }
        return differences == 1;
    } 
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小丑西瓜9/article/detail/718521
推荐阅读
相关标签
  

闽ICP备14008679号