当前位置:   article > 正文

回溯经典-m图着色问题_图着色问题求最小的整数m,用m种颜色对图g进行着色回溯算法

图着色问题求最小的整数m,用m种颜色对图g进行着色回溯算法

http://blog.csdn.net/suwei19870312/article/details/5282932

四色问题:

四色问题是m图着色问题的一个特列,根据四色原理,证明平面或球面上的任何地图的所有区域都至多可用四种、颜色来着色,并使任何两个有一段公共边界的相邻区域没有相同的颜色。这个问题可转换成对一平面图的4-着色判定问题(平面图是一个能画于平面上而边无任何交叉的图)。将地图的每个区域变成一个结点,若两个区域相邻,则相应的结点用一条边连接起来。多年来,虽然已证明用5种颜色足以对任一幅地图着色,但是一直找不到一定要求多于4种颜色的地图。直到1976年这个问题才由爱普尔(k.i.apple),黑肯(w.haken)和考西(j.koch)利用电子计算机的帮助得以解决。他们证明了4种颜色足以对任何地图着色。

在这一节,不是只考虑那些由地图产生出来的图,而是所有的图。讨论在至多使用m种颜色的情况下,可对一给定的图着色的所有不同方法。

 

m图着色问题:

题目大意:

1,已知一个图g和m>0种颜色,在只准使用这m种颜色对g的结点着色的情况下,是否能使图中任何相邻的两个结点都具有不同的颜色呢?这个问题称为m-着色判定问题

2,在m-着色最优化问题则是求可对图g着色的最小整数m。这个整数称为图g的色数。这是求图的最少着色问题,求出m的值。

题目的解法:

第一个问题,m-着色判定问题:

可以通过回溯的方法,不断的为每一个节点着色,在前面n-1个节点都合法的着色之后,开始对第n个节点进行着色,这时候枚举可用的m个颜色,通过和第n个节点相邻的节点的颜色,来判断这个颜色是否合法,如果找到那么一种颜色使得第n个节点能够着色,那么说明m种颜色的方案是可行的。返回真即可:

  1. //用于判断当前节点上涂上这个颜色可不可行,与其邻接节点的颜色做判断,这里用邻接表来存储图的信息  
  2. bool isok(int step)  
  3. {  
  4.      vector<int>::iterator iter;  
  5.      for(iter = input[step].begin(); iter != input[step].end(); iter++)  
  6.      {  
  7.               if(Color[step] == Color[*iter]) return false;  
  8.      }  
  9.      return true;  
  10. }  
  11. //step表示0->n的节点,color_num是指给color_num的颜色的个数可用  
  12. //判断如果给color_num的颜色的个数是否可行,如果可行返回true,否则false   
  13. bool DFS(int step, int color_num)  
  14. {  
  15.      if(step >= n) return true;  
  16.      else  
  17.      {  
  18.          int i;  
  19.          for(i = 1; i<= color_num; i++)  
  20.          {  
  21.                Color[step] = i;  
  22.                if(isok(step))  
  23.                {  
  24.                      if(DFS(step + 1, color_num))  
  25.                           return true;  
  26.                }  
  27.                Color[step] = 0;  
  28.          }  
  29.      }  
  30.      return false;  
  31. }  
 

 

第二个问题:求出最少的着色数m

有了上面的问题的积累,对于这个问题就很简单了,只要从1到n枚举颜色数,来调用上面的DFS(0, m),如果有一次调用返回true,那么这时这个颜色就是我们要求的最少的着色数。

  1. for(i = 1; i<= n; i++)  
  2. {  
  3.       if(DFS(0, i))  
  4.       {  
  5.              cout << "the min colors :" << i << endl;  
  6.              break;  
  7.       }  
  8. }  


声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小丑西瓜9/article/detail/72064
推荐阅读
相关标签
  

闽ICP备14008679号