当前位置:   article > 正文

RedissonClient妙用-分布式布隆过滤器

RedissonClient妙用-分布式布隆过滤器

目录

布隆过滤器介绍

布隆过滤器的落地应用场景

高并发处理 

多个过滤器平滑切换

分析总结


布隆过滤器介绍

布隆过滤器(Bloom Filter)是1970年由布隆提出的。它实际上是一个很长的二进制向量和一系列随机映射函数。布隆过滤器可以用于检索一个元素是否在一个集合中。

它的优点是空间效率和查询时间都比一般的算法要好的多,缺点是有一定的误识别率和删除困难。

什么业务场景需要使用这个布隆过滤器呢?我个人觉得是对误判数据不敏感。比如,在一个质检系统中,客服人员对重复的录音是非常敏感的,至于少了一些录音,对他们来说是无所谓的。

刚刚好,我们使用布隆过滤器对录音文件名进行过滤,布隆过滤器返回true的时候,我们把这部分录音给丢弃掉,返回false的时候,这部分数据就入库。而布隆过滤器返回false的时候,说明这个数据是100%不存在的,满足我们的应用场景。

布隆过滤器的落地应用场景

过滤代码

  1. package com.tml.mouseDemo.service;
  2. import lombok.extern.slf4j.Slf4j;
  3. import org.redisson.api.RBloomFilter;
  4. import org.redisson.api.RedissonClient;
  5. import org.springframework.beans.factory.annotation.Autowired;
  6. import org.springframework.stereotype.Service;
  7. import org.springframework.util.StringUtils;
  8. import javax.annotation.PostConstruct;
  9. import java.time.Duration;
  10. /**
  11. * 分布式布隆过滤器的实现
  12. */
  13. @Service
  14. @Slf4j
  15. public class BloomFilterService {
  16. @Autowired
  17. private RedissonClient redissonClient;
  18. private RBloomFilter bloomFilter;
  19. @PostConstruct
  20. public void init() {
  21. //参数:布隆过滤器的名字
  22. bloomFilter = redissonClient.getBloomFilter("repeatAudioFileName");
  23. // 初始化布隆过滤器 预计数据量 误判率
  24. boolean b = bloomFilter.tryInit(50000L, 0.03);
  25. log.info("repeatAudioFileName bloomFilter tryInit :{}", b);
  26. }
  27. public boolean checkFileNameRepeat(String audioFileName) {
  28. if (!StringUtils.hasText(audioFileName)) {
  29. throw new NullPointerException("audioFileName is empty");
  30. }
  31. //通过setNx的原子操作,保证在多个布隆过滤器之间有一个平滑的过度
  32. boolean setIfAbsent = redissonClient.getBucket(audioFileName).setIfAbsent("1", Duration.ofHours(1));
  33. if (!setIfAbsent) {
  34. log.info("this file is repeat!");
  35. return true;
  36. }
  37. boolean contains = bloomFilter.contains(audioFileName);
  38. if (!contains) {
  39. boolean add = bloomFilter.add(audioFileName);
  40. log.info("checkFileNameRepeat not contain:{} add:{}", audioFileName, add);
  41. //添加失败,说明过滤器中已经存在这个元素了
  42. return !add;
  43. }
  44. return true;
  45. }
  46. }

代码说明

高并发处理 

contains()和add()是两个操作,在多线程并发条件下,需要结合这两个方法的返回值来综合判断,是不是布隆过滤器包含这个元素。

多个过滤器平滑切换

setIfAbsent()这个操作是一个更加严谨的操作,考虑到实际场景中是有多个布隆过滤器的,在第一个布隆过滤器和第二个布隆过滤器进行切换的时候,怎么做到平滑的切换呢?

比如,我们的应用场景中,每天都会创建一个布隆过滤器,而录音的数据是源源不断的推送过来的,但是我们录音数据有一个特点是,相同的录音的数据可能会多次推送,并且多次的最大间隔不会超过1小时

假设repeatAudioFileName-20240206这个过滤器中已经包含了某个录音文件A,刚刚好时间到了20230207这天,需要重新创建布隆过滤器,在repeatAudioFileName-20240207这个过滤器中,恰好又有相同的文件进来了需要判断,在新的过滤器中刚好没有这个文件,这个时候,又会将录音A文件入库,这个就是业务异常了。

优化后的方案如下

优化的方案的代码就是如上

对应的压测代码也发一下

  1. @Test
  2. public void testRedis() throws InterruptedException {
  3. int threadSize = 100;
  4. String fileName = "sagfdsfgewfgdsghf25870.mkv";
  5. long start = System.currentTimeMillis();
  6. CyclicBarrier cyclicBarrier = new CyclicBarrier(threadSize);
  7. CountDownLatch countDownLatch = new CountDownLatch(threadSize);
  8. for (int i = 0; i < threadSize; i++) {
  9. new Thread(() -> {
  10. try {
  11. cyclicBarrier.await();
  12. boolean b = bloomFilterService.checkFileNameRepeat(fileName);
  13. log.info("checkFileNameRepeat----------:{}", b);
  14. } catch (Exception e) {
  15. e.printStackTrace();
  16. } finally {
  17. countDownLatch.countDown();
  18. }
  19. }, "repeat_test_" + i).start();
  20. }
  21. countDownLatch.await();
  22. long end = System.currentTimeMillis();
  23. log.info("start:{}-- cost:{} ms", start, (end - start));
  24. }

分析总结

布隆过滤器有对应的优缺点,是不是使用你们的业务场景,需要想清楚。上面的案例中,之所以不用数据库的唯一约束,是因为我们使用了sharding-jdbc分库分表,相同的文件名的数据对应的订单id不一样,也不是在一个表中,不好控制。

顺便说一下,布隆过滤器的应用场景还是很广泛的,在以太坊ETH底层实现中,就用了布隆过滤器。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小丑西瓜9/article/detail/80059
推荐阅读
相关标签
  

闽ICP备14008679号