当前位置:   article > 正文

深度学习(19)——informer 详解(1)_informer实战

informer实战

深度学习(19)——informer 详解


抱歉了,家人们,这main我写了很多注释解释每个参数,可是,服务器上粘贴过来全变成问号,欺负我英语不好,没用英文写注释???将就看吧,不理解的评论或者私信吧,或者等我那天心情好的时候更新吧。后面我都在本地注释,争取不出现这种情况。
注:这篇文章只讲解核心代码,util中的或者是一些不重要的部分没写
github自取欢迎造访

一、使用场景

时间序列预测都可以,一般用在长时间序列预测。看一下数据格式:天气数据:逐个小时,3w+条
在这里插入图片描述

二、入口

main.py

# -- coding: utf-8 --
import argparse
import os
import torch

from exp.exp_informer import Exp_Informer

parser = argparse.ArgumentParser(description='[Informer] Long Sequences Forecasting')

parser.add_argument('--model', type=str, default='informer',
                    help='model of experiment, options: [informer, informerstack, informerlight(TBD)]')  # model可以选择informer或者informerstack

parser.add_argument('--data', type=str, default='WTH', help='data')  # ????demo????????????????
parser.add_argument('--root_path', type=str, default='./data/', help='root path of the data file')  # ???????Excel?????
parser.add_argument('--data_path', type=str, default='WTH.csv', help='data file')  # ??????
parser.add_argument('--features', type=str, default='MS',
                    help='forecasting task, options:[M, S, MS]; M:multivariate predict multivariate  S:univariate predict univariate, MS:multivariate predict univariate')  # ??????????????????????????????
parser.add_argument('--target', type=str, default='OT', help='target feature in S or MS task')
parser.add_argument('--freq', type=str, default='h',
                    help='freq for time features encoding, options:[s:secondly, t:minutely, h:hourly, d:daily, b:business days, w:weekly, m:monthly], you can also use more detailed freq like 15min or 3h')  # ????
parser.add_argument('--checkpoints', type=str, default='./checkpoints/', help='location of model checkpoints')  # ??

parser.add_argument('--seq_len', type=int, default=96, help='input sequence length of Informer encoder') #??????
parser.add_argument('--label_len', type=int, default=48, help='start token length of Informer decoder')# ???????????
parser.add_argument('--pred_len', type=int, default=24, help='prediction sequence length')# ??????
# Informer decoder input: concat[start token series(label_len), zero padding series(pred_len)]

parser.add_argument('--enc_in', type=int, default=7, help='encoder input size') # encoder ????
parser.add_argument('--dec_in', type=int, default=7, help='decoder input size') # decoder ????
parser.add_argument('--c_out', type=int, default=7, help='output size') # ????
parser.add_argument('--d_model', type=int, default=512, help='dimension of model') # ??
parser.add_argument('--n_heads', type=int, default=8, help='num of heads') # ????
parser.add_argument('--e_layers', type=int, default=2, help='num of encoder layers') # encoder???
parser.add_argument('--d_layers', type=int, default=1, help='num of decoder layers') # decoder???
parser.add_argument('--s_layers', type=str, default='3,2,1', help='num of stack encoder layers') # encoder ??????model???informerstack???????
parser.add_argument('--d_ff', type=int, default=2048, help='dimension of fcn') # ???????
parser.add_argument('--factor', type=int, default=5, help='probsparse attn factor')  # ??????????????????
parser.add_argument('--padding', type=int, default=0, help='padding type')
parser.add_argument('--distil', action='store_false',
                    help='whether to use distilling in encoder, using this argument means not using distilling',
                    default=True)  # ?????distill?
parser.add_argument('--dropout', type=float, default=0.05, help='dropout')
parser.add_argument('--attn', type=str, default='prob',
                    help='attention used in encoder, options:[prob, full]')  # ??????prob-attention
parser.add_argument('--embed', type=str, default='timeF',
                    help='time features encoding, options:[timeF, fixed, learned]')
parser.add_argument('--activation', type=str, default='gelu', help='activation') # ????
parser.add_argument('--output_attention', action='store_true', help='whether to output attention in encoder') # ?encoder????attention
parser.add_argument('--do_predict', action='store_true', help='whether to predict unseen future data') # ??????
parser.add_argument('--mix', action='store_false', help='use mix attention in generative decoder', default=True)# ?decoder????mix attention
parser.add_argument('--cols', type=str, nargs='+', help='certain cols from the data files as the input features') # ???????????
parser.add_argument('--num_workers', type=int, default=0, help='data loader num workers') # dataloader ???cpu??
parser.add_argument('--itr', type=int, default=2, help='experiments times')
parser.add_argument('--train_epochs', type=int, default=4, help='train epochs') # ???
parser.add_argument('--batch_size', type=int, default=16, help='batch size of train input data')
parser.add_argument('--patience', type=int, default=3, help='early stopping patience') # ??
parser.add_argument('--learning_rate', type=float, default=0.0001, help='optimizer learning rate') # ??????????
parser.add_argument('--des', type=str, default='test', help='exp description')
parser.add_argument('--loss', type=str, default='mse', help='loss function')  # loss????MSE????MAE
parser.add_argument('--lradj', type=str, default='type1', help='adjust learning rate') # ???????
parser.add_argument('--use_amp', action='store_true', help='use automatic mixed precision training', default=False)
parser.add_argument('--inverse', action='store_true', help='inverse output data', default=False)

parser.add_argument('--use_gpu', type=bool, default=True, help='use gpu')
parser.add_argument('--gpu', type=int, default=1, help='gpu')
parser.add_argument('--use_multi_gpu', action='store_true', help='use multiple gpus', default=False)
parser.add_argument('--devices', type=str, default='0,1', help='device ids of multile gpus')

args = parser.parse_args()  # ??????

args.use_gpu = True if torch.cuda.is_available() and args.use_gpu else False

if args.use_gpu and args.use_multi_gpu:
    args.devices = args.devices.replace(' ', '')
    device_ids = args.devices.split(',')
    args.device_ids = [int(id_) for id_ in device_ids]
    args.gpu = args.device_ids[0]

data_parser = {
    'ETTh1': {'data': 'ETTh1.csv', 'T': 'OT', 'M': [7, 7, 7], 'S': [1, 1, 1], 'MS': [7, 7, 1]},
    'ETTh2': {'data': 'ETTh2.csv', 'T': 'OT', 'M': [7, 7, 7], 'S': [1, 1, 1], 'MS': [7, 7, 1]},
    'ETTm1': {'data': 'ETTm1.csv', 'T': 'OT', 'M': [7, 7, 7], 'S': [1, 1, 1], 'MS': [7, 7, 1]},
    'ETTm2': {'data': 'ETTm2.csv', 'T': 'OT', 'M': [7, 7, 7], 'S': [1, 1, 1], 'MS': [7, 7, 1]},
    'WTH': {'data': 'WTH.csv', 'T': 'WetBulbCelsius', 'M': [12, 12, 12], 'S': [1, 1, 1], 'MS': [12, 12, 1]},
    'ECL': {'data': 'ECL.csv', 'T': 'MT_320', 'M': [321, 321, 321], 'S': [1, 1, 1], 'MS': [321, 321, 1]},
    'Solar': {'data': 'solar_AL.csv', 'T': 'POWER_136', 'M': [137, 137, 137], 'S': [1, 1, 1], 'MS': [137, 137, 1]},
}
if args.data in data_parser.keys():
    data_info = data_parser[args.data]
    args.data_path = data_info['data']
    args.target = data_info['T']  # target??
    args.enc_in, args.dec_in, args.c_out = data_info[args.features]

args.s_layers = [int(s_l) for s_l in args.s_layers.replace(' ', '').split(',')]
args.detail_freq = args.freq
args.freq = args.freq[-1:]

#print('Args in experiment:')
#print(args)

Exp = Exp_Informer

for ii in range(args.itr):
    # setting record of experiments
    setting = '{}_{}_ft{}_sl{}_ll{}_pl{}_dm{}_nh{}_el{}_dl{}_df{}_at{}_fc{}_eb{}_dt{}_mx{}_{}_{}'.format(args.model,
                                                                                                         args.data,
                                                                                                         args.features,
                                                                                                         args.seq_len,
                                                                                                         args.label_len,
                                                                                                         args.pred_len,
                                                                                                         args.d_model,# 512
                                                                                                         args.n_heads,
                                                                                                         args.e_layers,
                                                                                                         args.d_layers,
                                                                                                         args.d_ff,
                                                                                                         args.attn, # prob attention
                                                                                                         args.factor,
                                                                                                         args.embed,
                                                                                                         args.distil,
                                                                                                         args.mix,
                                                                                                         args.des, ii)

    exp = Exp(args)  # set experiments
    print('>>>>>>>start training : {}>>>>>>>>>>>>>>>>>>>>>>>>>>'.format(setting))
    exp.train(setting)

    print('>>>>>>>testing : {}<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<'.format(setting))
    exp.test(setting)

    if args.do_predict:
        print('>>>>>>>predicting : {}<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<'.format(setting))
        exp.predict(setting, True)

    torch.cuda.empty_cache()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134

三、dataloader

dataloader.py

import os
import numpy as np
import pandas as pd

import torch
from torch.utils.data import Dataset, DataLoader
# from sklearn.preprocessing import StandardScaler

from utils.tools import StandardScaler
from utils.timefeatures import time_features

import warnings
warnings.filterwarnings('ignore')

class Dataset_Custom(Dataset):
    def __init__(self, root_path, flag='train', size=None, 
                 features='S', data_path='ETTh1.csv', 
                 target='OT', scale=True, inverse=False, timeenc=0, freq='h', cols=None):
        # size [seq_len, label_len, pred_len]
        # info
        if size == None:
            self.seq_len = 24*4*4
            self.label_len = 24*4
            self.pred_len = 24*4
        else:
            self.seq_len = size[0]
            self.label_len = size[1]
            self.pred_len = size[2]
        # init
        assert flag in ['train', 'test', 'val']
        type_map = {'train':0, 'val':1, 'test':2}
        self.set_type = type_map[flag]
        
        self.features = features
        self.target = target
        self.scale = scale
        self.inverse = inverse
        self.timeenc = timeenc
        self.freq = freq
        self.cols=cols
        self.root_path = root_path
        self.data_path = data_path
        self.__read_data__()

    def __read_data__(self):
        self.scaler = StandardScaler() # 针对特征(一列数据)进行归一化处理,均值为0,方差为1
        df_raw = pd.read_csv(os.path.join(self.root_path,
                                          self.data_path))
        '''
        df_raw.columns: ['date', ...(other features), target feature]
        '''
        # cols = list(df_raw.columns); 
        if self.cols:
            cols=self.cols.copy()
            cols.remove(self.target)
        else:
            cols = list(df_raw.columns); cols.remove(self.target); cols.remove('date')
        df_raw = df_raw[['date']+cols+[self.target]]# 将数据处理为[date,特征,target]格式
        # 训练集验证集split
        num_train = int(len(df_raw)*0.7)
        num_test = int(len(df_raw)*0.2)
        num_vali = len(df_raw) - num_train - num_test
        border1s = [0, num_train-self.seq_len, len(df_raw)-num_test-self.seq_len] # 训练集,验证集,测试集的起始点
        border2s = [num_train, num_train+num_vali, len(df_raw)]# 训练集,验证集,测试集终点
        border1 = border1s[self.set_type] # 不同的阶段选择不同的数据起点,0,1,2分别对应训练,验证,测试
        border2 = border2s[self.set_type]
        
        if self.features=='M' or self.features=='MS':
            cols_data = df_raw.columns[1:]
            df_data = df_raw[cols_data]
        elif self.features=='S':
            df_data = df_raw[[self.target]]

        if self.scale: # 是否标准化
            train_data = df_data[border1s[0]:border2s[0]] # 虽然写的是train_data ,但是会根据不同的阶段变换
            self.scaler.fit(train_data.values)
            data = self.scaler.transform(df_data.values)
        else:
            data = df_data.values
            
        df_stamp = df_raw[['date']][border1:border2]
        df_stamp['date'] = pd.to_datetime(df_stamp.date) #检查数据中的date格式是否一致
        data_stamp = time_features(df_stamp, timeenc=self.timeenc, freq=self.freq)

        self.data_x = data[border1:border2]
        if self.inverse:
            self.data_y = df_data.values[border1:border2]
        else:
            self.data_y = data[border1:border2]
        self.data_stamp = data_stamp
    
    def __getitem__(self, index):
        s_begin = index #输入序列起始位置
        s_end = s_begin + self.seq_len  #输入序列终止位置
        r_begin = s_end - self.label_len 
        r_end = r_begin + self.label_len + self.pred_len

        seq_x = self.data_x[s_begin:s_end]
        if self.inverse:
            seq_y = np.concatenate([self.data_x[r_begin:r_begin+self.label_len], self.data_y[r_begin+self.label_len:r_end]], 0)
        else:
            seq_y = self.data_y[r_begin:r_end]
        seq_x_mark = self.data_stamp[s_begin:s_end] # 时间戳
        seq_y_mark = self.data_stamp[r_begin:r_end]

        return seq_x, seq_y, seq_x_mark, seq_y_mark # 返回输入序列,输出序列,输入时间戳,输出时间戳
    
    def __len__(self):
        return len(self.data_x) - self.seq_len- self.pred_len + 1

    def inverse_transform(self, data):
        return self.scaler.inverse_transform(data)

class Dataset_Pred(Dataset):
    def __init__(self, root_path, flag='pred', size=None, 
                 features='S', data_path='ETTh1.csv', 
                 target='OT', scale=True, inverse=False, timeenc=0, freq='15min', cols=None):
        # size [seq_len, label_len, pred_len]
        # info
        if size == None:
            self.seq_len = 24*4*4
            self.label_len = 24*4
            self.pred_len = 24*4
        else:
            self.seq_len = size[0]
            self.label_len = size[1]
            self.pred_len = size[2]
        # init
        assert flag in ['pred']
        self.features = features
        self.target = target
        self.scale = scale
        self.inverse = inverse
        self.timeenc = timeenc
        self.freq = freq
        self.cols=cols
        self.root_path = root_path
        self.data_path = data_path
        self.__read_data__()

    def __read_data__(self):
        self.scaler = StandardScaler()
        df_raw = pd.read_csv(os.path.join(self.root_path,
                                          self.data_path))
        '''
        df_raw.columns: ['date', ...(other features), target feature]
        '''
        if self.cols:
            cols=self.cols.copy()
            cols.remove(self.target)
        else:
            cols = list(df_raw.columns); cols.remove(self.target); cols.remove('date')
        df_raw = df_raw[['date']+cols+[self.target]]
        
        border1 = len(df_raw)-self.seq_len
        border2 = len(df_raw)
        
        if self.features=='M' or self.features=='MS':
            cols_data = df_raw.columns[1:]
            df_data = df_raw[cols_data]
        elif self.features=='S':
            df_data = df_raw[[self.target]]

        if self.scale:
            self.scaler.fit(df_data.values)
            data = self.scaler.transform(df_data.values)
        else:
            data = df_data.values
            
        tmp_stamp = df_raw[['date']][border1:border2]
        tmp_stamp['date'] = pd.to_datetime(tmp_stamp.date)
        pred_dates = pd.date_range(tmp_stamp.date.values[-1], periods=self.pred_len+1, freq=self.freq)
        
        df_stamp = pd.DataFrame(columns = ['date'])
        df_stamp.date = list(tmp_stamp.date.values) + list(pred_dates[1:])
        data_stamp = time_features(df_stamp, timeenc=self.timeenc, freq=self.freq[-1:])

        self.data_x = data[border1:border2]
        if self.inverse:
            self.data_y = df_data.values[border1:border2]
        else:
            self.data_y = data[border1:border2]
        self.data_stamp = data_stamp
    
    def __getitem__(self, index):
        s_begin = index
        s_end = s_begin + self.seq_len
        r_begin = s_end - self.label_len
        r_end = r_begin + self.label_len + self.pred_len

        seq_x = self.data_x[s_begin:s_end]
        if self.inverse:
            seq_y = self.data_x[r_begin:r_begin+self.label_len]
        else:
            seq_y = self.data_y[r_begin:r_begin+self.label_len]
        seq_x_mark = self.data_stamp[s_begin:s_end]
        seq_y_mark = self.data_stamp[r_begin:r_end]

        return seq_x, seq_y, seq_x_mark, seq_y_mark
    
    def __len__(self):
        return len(self.data_x) - self.seq_len + 1

    def inverse_transform(self, data):
        return self.scaler.inverse_transform(data)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205

四、model

informer.py

import torch
import torch.nn as nn
import torch.nn.functional as F

from utils.masking import TriangularCausalMask, ProbMask
from models.encoder import Encoder, EncoderLayer, ConvLayer, EncoderStack
from models.decoder import Decoder, DecoderLayer
from models.attn import FullAttention, ProbAttention, AttentionLayer
from models.embed import DataEmbedding


class Informer(nn.Module):
    def __init__(self, enc_in, dec_in, c_out, seq_len, label_len, out_len,
                 factor=5, d_model=512, n_heads=8, e_layers=3, d_layers=2, d_ff=512,
                 dropout=0.0, attn='prob', embed='fixed', freq='h', activation='gelu',
                 output_attention=False, distil=True, mix=True,
                 device=torch.device('cuda:0')):
        super(Informer, self).__init__()
        self.pred_len = out_len
        self.attn = attn
        self.output_attention = output_attention

        # Encoding
        self.enc_embedding = DataEmbedding(enc_in, d_model, embed, freq, dropout)
        self.dec_embedding = DataEmbedding(dec_in, d_model, embed, freq, dropout)
        # Attention
        Attn = ProbAttention if attn == 'prob' else FullAttention
        # Encoder
        self.encoder = Encoder(
            [
                EncoderLayer(
                    AttentionLayer(Attn(False, factor, attention_dropout=dropout, output_attention=output_attention),
                                   d_model, n_heads, mix=False),
                    d_model,
                    d_ff,
                    dropout=dropout,
                    activation=activation
                ) for l in range(e_layers)
            ],
            [
                ConvLayer(
                    d_model
                ) for l in range(e_layers - 1)
            ] if distil else None,
            norm_layer=torch.nn.LayerNorm(d_model)
        )
        # Decoder
        self.decoder = Decoder(
            [
                DecoderLayer(
                    AttentionLayer(Attn(True, factor, attention_dropout=dropout, output_attention=False),
                                   d_model, n_heads, mix=mix),
                    AttentionLayer(FullAttention(False, factor, attention_dropout=dropout, output_attention=False),
                                   d_model, n_heads, mix=False),
                    d_model,
                    d_ff,
                    dropout=dropout,
                    activation=activation,
                )
                for l in range(d_layers)
            ],
            norm_layer=torch.nn.LayerNorm(d_model)
        )
        # self.end_conv1 = nn.Conv1d(in_channels=label_len+out_len, out_channels=out_len, kernel_size=1, bias=True)
        # self.end_conv2 = nn.Conv1d(in_channels=d_model, out_channels=c_out, kernel_size=1, bias=True)
        self.projection = nn.Linear(d_model, c_out, bias=True)

    def forward(self, x_enc, x_mark_enc, x_dec, x_mark_dec,
                enc_self_mask=None, dec_self_mask=None, dec_enc_mask=None):
#        print(x_enc.shape)
#        print(x_mark_enc.shape)

        enc_out = self.enc_embedding(x_enc, x_mark_enc) # 将特征与data做embedding(包括三部分)
        enc_out, attns = self.encoder(enc_out, attn_mask=enc_self_mask)

#        print(x_dec.shape)
#        print(x_mark_dec.shape)
        dec_out = self.dec_embedding(x_dec, x_mark_dec)
        dec_out = self.decoder(dec_out, enc_out, x_mask=dec_self_mask, cross_mask=dec_enc_mask)
#        print(dec_out.shape)
        dec_out = self.projection(dec_out)
#        print(dec_out.shape)
        # dec_out = self.end_conv1(dec_out)
        # dec_out = self.end_conv2(dec_out.transpose(2,1)).transpose(1,2)
        if self.output_attention:
            return dec_out[:, -self.pred_len:, :], attns
        else:
            return dec_out[:, -self.pred_len:, :]  # [B, L, D]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88

(1)Embedding

embed.py
在进入encoder和decoder前需要先对输入进行embedding,其中涉及到的是value的token_embedding,位置的position_embedding和长时间的time_feature_embedding

  • 【TokenEmbedding】将序列长度转化为可进入模型的维度(本例中为512)
  • 【PositionalEmbedding】可以理解为选取sin和cos函数中位置与这个序列对应,给一个在正弦或者余弦上对应的位置信息(512)
  • 【TimeFeatureEmbedding】将现在的时间间隔转为和上面相同的维度(512)
import torch
import torch.nn as nn
import torch.nn.functional as F

import math

class PositionalEmbedding(nn.Module):
    def __init__(self, d_model, max_len=5000):
        super(PositionalEmbedding, self).__init__()
        # Compute the positional encodings once in log space.
        pe = torch.zeros(max_len, d_model).float()
        pe.require_grad = False

        position = torch.arange(0, max_len).float().unsqueeze(1)
        div_term = (torch.arange(0, d_model, 2).float() * -(math.log(10000.0) / d_model)).exp()

        pe[:, 0::2] = torch.sin(position * div_term)
        pe[:, 1::2] = torch.cos(position * div_term)

        pe = pe.unsqueeze(0)
        self.register_buffer('pe', pe) #一共5000个位置(1,5000,512)

    def forward(self, x):
        return self.pe[:, :x.size(1)] # 序列长度的位置(seq_len)(1,seq_len,512)

class TokenEmbedding(nn.Module):
    def __init__(self, c_in, d_model):
        super(TokenEmbedding, self).__init__()
        padding = 1 if torch.__version__>='1.5.0' else 2
        self.tokenConv = nn.Conv1d(in_channels=c_in, out_channels=d_model, 
                                    kernel_size=3, padding=padding, padding_mode='circular')
        for m in self.modules():
            if isinstance(m, nn.Conv1d):
                nn.init.kaiming_normal_(m.weight,mode='fan_in',nonlinearity='leaky_relu')

    def forward(self, x):
#        print(x.shape)
        x = self.tokenConv(x.permute(0, 2, 1)).transpose(1,2)# (B,seq_len,feature_len)——>(B,seq_len,512)
#        print(x.shape)
        return x

class FixedEmbedding(nn.Module):
    def __init__(self, c_in, d_model):
        super(FixedEmbedding, self).__init__()

        w = torch.zeros(c_in, d_model).float()
        w.require_grad = False

        position = torch.arange(0, c_in).float().unsqueeze(1)
        div_term = (torch.arange(0, d_model, 2).float() * -(math.log(10000.0) / d_model)).exp()

        w[:, 0::2] = torch.sin(position * div_term)
        w[:, 1::2] = torch.cos(position * div_term)

        self.emb = nn.Embedding(c_in, d_model)
        self.emb.weight = nn.Parameter(w, requires_grad=False)

    def forward(self, x):
        return self.emb(x).detach()

class TemporalEmbedding(nn.Module):
    def __init__(self, d_model, embed_type='fixed', freq='h'):
        super(TemporalEmbedding, self).__init__()

        minute_size = 4; hour_size = 24
        weekday_size = 7; day_size = 32; month_size = 13

        Embed = FixedEmbedding if embed_type=='fixed' else nn.Embedding
        if freq=='t':
            self.minute_embed = Embed(minute_size, d_model)
        self.hour_embed = Embed(hour_size, d_model)
        self.weekday_embed = Embed(weekday_size, d_model)
        self.day_embed = Embed(day_size, d_model)
        self.month_embed = Embed(month_size, d_model)
    
    def forward(self, x):
#        print(x.shape)
        x = x.long()
        
        minute_x = self.minute_embed(x[:,:,4]) if hasattr(self, 'minute_embed') else 0.
#        print(minute_x.shape)
        hour_x = self.hour_embed(x[:,:,3])
#        print(hour_x.shape)
        weekday_x = self.weekday_embed(x[:,:,2])
#        print(weekday_x.shape)
        day_x = self.day_embed(x[:,:,1])
#        print(day_x.shape)
        month_x = self.month_embed(x[:,:,0])
#        print(month_x.shape)
        
        return hour_x + weekday_x + day_x + month_x + minute_x

class TimeFeatureEmbedding(nn.Module):
    def __init__(self, d_model, embed_type='timeF', freq='h'):
        super(TimeFeatureEmbedding, self).__init__()

        freq_map = {'h':4, 't':5, 's':6, 'm':1, 'a':1, 'w':2, 'd':3, 'b':3}
        d_inp = freq_map[freq]
        self.embed = nn.Linear(d_inp, d_model) # 4维映射d_model维度
    
    def forward(self, x):
        return self.embed(x)

class DataEmbedding(nn.Module):
    def __init__(self, c_in, d_model, embed_type='fixed', freq='h', dropout=0.1):
        super(DataEmbedding, self).__init__()

        self.value_embedding = TokenEmbedding(c_in=c_in, d_model=d_model)
        self.position_embedding = PositionalEmbedding(d_model=d_model)
        self.temporal_embedding = TemporalEmbedding(d_model=d_model, embed_type=embed_type, freq=freq) if embed_type!='timeF' else TimeFeatureEmbedding(d_model=d_model, embed_type=embed_type, freq=freq)

        self.dropout = nn.Dropout(p=dropout)

    def forward(self, x, x_mark):
        x = self.value_embedding(x) + self.position_embedding(x) + self.temporal_embedding(x_mark) # x表示输入值,mark表示对应的时间,将值,位置和时间embedding后相加作为最后的x
        
        return self.dropout(x)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117

(2)Encoder

encoder.py
Encoder主要由两个attention和多个卷积层构成,其中attention部分【后面介绍】又由ProbAttention和卷积层组成

import torch
import torch.nn as nn
import torch.nn.functional as F

class ConvLayer(nn.Module):
    def __init__(self, c_in):
        super(ConvLayer, self).__init__()
        padding = 1 if torch.__version__>='1.5.0' else 2
        self.downConv = nn.Conv1d(in_channels=c_in,
                                  out_channels=c_in,
                                  kernel_size=3,
                                  padding=padding,
                                  padding_mode='circular')
        self.norm = nn.BatchNorm1d(c_in)
        self.activation = nn.ELU()
        self.maxPool = nn.MaxPool1d(kernel_size=3, stride=2, padding=1)

    def forward(self, x):
        x = self.downConv(x.permute(0, 2, 1))
        x = self.norm(x)
        x = self.activation(x)
        x = self.maxPool(x)
        x = x.transpose(1,2)
        return x

class EncoderLayer(nn.Module):
    def __init__(self, attention, d_model, d_ff=None, dropout=0.1, activation="relu"):
        super(EncoderLayer, self).__init__()
        d_ff = d_ff or 4*d_model
        self.attention = attention
        self.conv1 = nn.Conv1d(in_channels=d_model, out_channels=d_ff, kernel_size=1) # input:512,output:2048
        self.conv2 = nn.Conv1d(in_channels=d_ff, out_channels=d_model, kernel_size=1)
        self.norm1 = nn.LayerNorm(d_model)
        self.norm2 = nn.LayerNorm(d_model)
        self.dropout = nn.Dropout(dropout)
        self.activation = F.relu if activation == "relu" else F.gelu

    def forward(self, x, attn_mask=None):
        # x [B, L, D]
        # x = x + self.dropout(self.attention(
        #     x, x, x,
        #     attn_mask = attn_mask
        # ))
        new_x, attn = self.attention(
            x, x, x,
            attn_mask = attn_mask
        )
        x = x + self.dropout(new_x) # 残差连接 B,seq_len,d_model

        y = x = self.norm1(x)
        y = self.dropout(self.activation(self.conv1(y.transpose(-1,1))))
        y = self.dropout(self.conv2(y).transpose(-1,1))

        return self.norm2(x+y), attn

class Encoder(nn.Module):
    def __init__(self, attn_layers, conv_layers=None, norm_layer=None):
        super(Encoder, self).__init__()
        self.attn_layers = nn.ModuleList(attn_layers)
        self.conv_layers = nn.ModuleList(conv_layers) if conv_layers is not None else None
        self.norm = norm_layer

    def forward(self, x, attn_mask=None):
        # x [B, L, D]
        attns = []
        if self.conv_layers is not None:
            for attn_layer, conv_layer in zip(self.attn_layers, self.conv_layers):
                x, attn = attn_layer(x, attn_mask=attn_mask) # 针对embedding的input做prob_attention
                x = conv_layer(x) # (b,sqe_len,dimension)——>(b,sqe_len/2,dimension)
                attns.append(attn)
            x, attn = self.attn_layers[-1](x, attn_mask=attn_mask)
            attns.append(attn)
        else:
            for attn_layer in self.attn_layers:
                x, attn = attn_layer(x, attn_mask=attn_mask)
                attns.append(attn)

        if self.norm is not None:
            x = self.norm(x)

        return x, attns
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81

(3)Decoder

decoder.py
decoder 也由两个attention组成,一个使用ProbAttention求decoder_input的自注意力,另一个使用FullAttention求decoder_input和encoder_output之间的cross attention.

import torch
import torch.nn as nn
import torch.nn.functional as F

class DecoderLayer(nn.Module):
    def __init__(self, self_attention, cross_attention, d_model, d_ff=None,
                 dropout=0.1, activation="relu"):
        super(DecoderLayer, self).__init__()
        d_ff = d_ff or 4*d_model
        self.self_attention = self_attention # x本身的注意力机制
        self.cross_attention = cross_attention # x和y之间的注意力机制
        self.conv1 = nn.Conv1d(in_channels=d_model, out_channels=d_ff, kernel_size=1)
        self.conv2 = nn.Conv1d(in_channels=d_ff, out_channels=d_model, kernel_size=1)
        self.norm1 = nn.LayerNorm(d_model)
        self.norm2 = nn.LayerNorm(d_model)
        self.norm3 = nn.LayerNorm(d_model)
        self.dropout = nn.Dropout(dropout)
        self.activation = F.relu if activation == "relu" else F.gelu

    def forward(self, x, cross, x_mask=None, cross_mask=None): # cross是encoder的output
        x = x + self.dropout(self.self_attention(
            x, x, x,
            attn_mask=x_mask
        )[0])
        x = self.norm1(x)

        x = x + self.dropout(self.cross_attention(
            x, cross, cross, #q,k,v
            attn_mask=cross_mask
        )[0])

        y = x = self.norm2(x)
        y = self.dropout(self.activation(self.conv1(y.transpose(-1,1))))
        y = self.dropout(self.conv2(y).transpose(-1,1))

        return self.norm3(x+y)

class Decoder(nn.Module):
    def __init__(self, layers, norm_layer=None):
        super(Decoder, self).__init__()
        self.layers = nn.ModuleList(layers)
        self.norm = norm_layer

    def forward(self, x, cross, x_mask=None, cross_mask=None):
        for layer in self.layers:
            x = layer(x, cross, x_mask=x_mask, cross_mask=cross_mask)

        if self.norm is not None:
            x = self.norm(x)
        return x
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50

五、Attention

attention.py

import torch
import torch.nn as nn
import torch.nn.functional as F

import numpy as np

from math import sqrt
from utils.masking import TriangularCausalMask, ProbMask

class FullAttention(nn.Module):
    def __init__(self, mask_flag=True, factor=5, scale=None, attention_dropout=0.1, output_attention=False):
        super(FullAttention, self).__init__()
        self.scale = scale
        self.mask_flag = mask_flag
        self.output_attention = output_attention
        self.dropout = nn.Dropout(attention_dropout)
        
    def forward(self, queries, keys, values, attn_mask):
        B, L, H, E = queries.shape
        _, S, _, D = values.shape
        scale = self.scale or 1./sqrt(E)

        scores = torch.einsum("blhe,bshe->bhls", queries, keys) #query:decoder_input 与 encoder_outputb,h,seq_len,start_len
#        print(scores.shape)
        if self.mask_flag:
            if attn_mask is None:
                attn_mask = TriangularCausalMask(B, L, device=queries.device)

            scores.masked_fill_(attn_mask.mask, -np.inf)

        A = self.dropout(torch.softmax(scale * scores, dim=-1)) #取scale
        V = torch.einsum("bhls,bshd->blhd", A, values)
#        print(V.shape)
        if self.output_attention:
            return (V.contiguous(), A)
        else:
            return (V.contiguous(), None)

class ProbAttention(nn.Module):
    def __init__(self, mask_flag=True, factor=5, scale=None, attention_dropout=0.1, output_attention=False):
        super(ProbAttention, self).__init__()
        self.factor = factor
        self.scale = scale
        self.mask_flag = mask_flag
        self.output_attention = output_attention
        self.dropout = nn.Dropout(attention_dropout)

    def _prob_QK(self, Q, K, sample_k, n_top): # n_top: c*ln(L_q)
        # Q [B, H, L, D]
        B, H, L_K, E = K.shape
        _, _, L_Q, _ = Q.shape

        # calculate the sampled Q_K
        K_expand = K.unsqueeze(-3).expand(B, H, L_Q, L_K, E)#先增加一个维度,相当于复制,再扩充
#        print(K_expand.shape)
        index_sample = torch.randint(L_K, (L_Q, sample_k)) # real U = U_part(factor*ln(L_k))*L_q 构建96*25的随机数
        K_sample = K_expand[:, :, torch.arange(L_Q).unsqueeze(1), index_sample, :]# 随机取出的25个k值
#        print(K_sample.shape)
        Q_K_sample = torch.matmul(Q.unsqueeze(-2), K_sample.transpose(-2, -1)).squeeze()#96个Q和25个K之间的关系
#        print(Q_K_sample.shape)

        # find the Top_k query with sparisty measurement
        M = Q_K_sample.max(-1)[0] - torch.div(Q_K_sample.sum(-1), L_K)#96个Q中每一个选跟其他K关系最大的值 再计算与均匀分布的差异
#        print(Q_K_sample.max(-1)[0].shape)
#        print(M.shape)
        M_top = M.topk(n_top, sorted=False)[1]#对96个Q的评分中选出25个 返回值1表示要得到索引
#        print(M_top.shape)

        # use the reduced Q to calculate Q_K
        Q_reduce = Q[torch.arange(B)[:, None, None],
                     torch.arange(H)[None, :, None],
                     M_top, :] # factor*ln(L_q) 取出来Q的特征
#        print(Q_reduce.shape)
        Q_K = torch.matmul(Q_reduce, K.transpose(-2, -1)) # factor*ln(L_q)*L_k 25个Q和全部K之间的关系
#        print(Q_K.shape)
        return Q_K, M_top

    def _get_initial_context(self, V, L_Q):
        B, H, L_V, D = V.shape
        if not self.mask_flag:
            # V_sum = V.sum(dim=-2)
            V_sum = V.mean(dim=-2)
#            print(V_sum.shape)
            contex = V_sum.unsqueeze(-2).expand(B, H, L_Q, V_sum.shape[-1]).clone()#先把96个V都用均值来替换
#            print(contex.shape)
        else: # use mask
            assert(L_Q == L_V) # requires that L_Q == L_V, i.e. for self-attention only
            contex = V.cumsum(dim=-2) #累加
#            print(contex.shape)
        return contex

    def _update_context(self, context_in, V, scores, index, L_Q, attn_mask): # context:初始值,一般初始是每个序列的均值,v为value,score表示top的分数,index表示top的index,l_q是序列长度
        B, H, L_V, D = V.shape

        if self.mask_flag:
            attn_mask = ProbMask(B, H, L_Q, index, scores, device=V.device)
            scores.masked_fill_(attn_mask.mask, -np.inf) # mask中TRUE的部分填充为inf
#            print(scores.shape)
        attn = torch.softmax(scores, dim=-1) # nn.Softmax(dim=-1)(scores)
#        print(attn.shape)

        context_in[torch.arange(B)[:, None, None],
                   torch.arange(H)[None, :, None],
                   index, :] = torch.matmul(attn, V).type_as(context_in)#对25个有Q的更新V,其余的没变还是均值
#        print(context_in.shape)
        if self.output_attention:
            attns = (torch.ones([B, H, L_V, L_V])/L_V).type_as(attn).to(attn.device)
            attns[torch.arange(B)[:, None, None], torch.arange(H)[None, :, None], index, :] = attn
#            print(attns.shape)
            return (context_in, attns)
        else:
            return (context_in, None)

    def forward(self, queries, keys, values, attn_mask):
        '''
        注意力改编
        :param queries:B*seq_len*head*(d_model/head)
        :param keys: B*seq_len*head*(d_model/head)
        :param values: B*seq_len*head*(d_model/head)
        :param attn_mask:
        :return: 返回attention矩阵
        '''
        B, L_Q, H, D = queries.shape
        _, L_K, _, _ = keys.shape

        queries = queries.transpose(2,1)# (32,72,8,64)——>(32,8,72,64)
        keys = keys.transpose(2,1)
        values = values.transpose(2,1)

        U_part = self.factor * np.ceil(np.log(L_K)).astype('int').item() # c*ln(L_k) Key里要选的个数
        u = self.factor * np.ceil(np.log(L_Q)).astype('int').item() # c*ln(L_q) 

        U_part = U_part if U_part<L_K else L_K
        u = u if u<L_Q else L_Q
        
        scores_top, index = self._prob_QK(queries, keys, sample_k=U_part, n_top=u) # 得到分数最高的u个,返回u个的index

        # add scale factor
        scale = self.scale or 1./sqrt(D)
        if scale is not None:
            scores_top = scores_top * scale
        # get the context,刚开始将所有的value赋值为每个序列的均值(48个和的均值)
        context = self._get_initial_context(values, L_Q)
        # update the context with selected top_k queries
        context, attn = self._update_context(context, values, scores_top, index, L_Q, attn_mask)# 根据score和top-index更新value值
        
        return context.transpose(2,1).contiguous(), attn


class AttentionLayer(nn.Module):
    def __init__(self, attention, d_model, n_heads, 
                 d_keys=None, d_values=None, mix=False):
        super(AttentionLayer, self).__init__()

        d_keys = d_keys or (d_model//n_heads)
        d_values = d_values or (d_model//n_heads)

        self.inner_attention = attention
        self.query_projection = nn.Linear(d_model, d_keys * n_heads)
        self.key_projection = nn.Linear(d_model, d_keys * n_heads)
        self.value_projection = nn.Linear(d_model, d_values * n_heads)
        self.out_projection = nn.Linear(d_values * n_heads, d_model)
        self.n_heads = n_heads
        self.mix = mix

    def forward(self, queries, keys, values, attn_mask):
        B, L, _ = queries.shape
        _, S, _ = keys.shape
        H = self.n_heads

        queries = self.query_projection(queries).view(B, L, H, -1) # (32,72,512)——>(32,72,8,64)
        keys = self.key_projection(keys).view(B, S, H, -1)# (32,72,512)——>(32,72,8,64)
        values = self.value_projection(values).view(B, S, H, -1)# (32,72,512)——>(32,72,8,64)

        out, attn = self.inner_attention(
            queries,
            keys,
            values,
            attn_mask
        )
        if self.mix:
            out = out.transpose(2,1).contiguous()
        out = out.view(B, L, -1) # B,seq_len,d_model

        return self.out_projection(out), attn
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185

六、人肉笔记

  • 模型的一个理念:要达到长时间序列的需求,前期一定是由长时间序列作为训练这是肯定的,在已经有大量的前时间段的数据情形下,在预测未来时间的情形是,将之前已知的部分数据做为先验知识,一同放进预测的数据中,将真正要预测的数据进行mask,如要预测未来连续24个时间点的值,那作者会在24个之前先concat 48个这时间以前的数据(可以理解为让模型更好的使用已知数据,有肉套白狼一定比空手套白狼效率更高)
  • 这个模型的创作者非常友善的地方就是在dataloader的部分是custom的,所以大家可以不用再自己写dataloader了,当然用不了还是要自己写的 。我必然是要手写的,因为我的数据不规律,frequency是不规律的,此外,我的数据也和他的完全不同!!这里的dataloader每次返回值是x(feature),y(result),x_stamp,y_stamp
  • 模型训练的核心是process_one_batch这个函数,他的主要功能就是得到decoder的input(将先验的seq和要预测的seq拼接)decoder_input
  • model_forward (x,x_stamp,decoder_input,decoder_stamp)
    • Embedding(Token,Position,TimeFeature)

    • encoder_forward

      • encoderLayer_forward

        • AttentionLayer_forward
          变多头
          • probAttention_forward

encoder 经过一个probAttention后会pooling一次序列维度从dim减低为一半,之后再经过一个probAttention

  • decoder 与encoder相似,但是有不同,差异在:

    • 在initial context的时候,encoder的初始值是取平均值,decoder是累加的
    • 在更新context的时候,需要先初始化probmask,encoder不需要生成mask
    • decoder中的两个attention,一个是probAttention另一个是fullattention

希望对大家有所启发,我明天要接着搬我自己的砖了

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小丑西瓜9/article/detail/86281
推荐阅读
相关标签
  

闽ICP备14008679号