赞
踩
训练模型时,需要使用变量(Variables)保存和更新参数。Variables是包含张量(tensor)的内存缓冲。变量必须要先被初始化(initialize),而且可以在训练时和训练后保存(save)到磁盘中。之后可以再恢复(restore)保存的变量值来训练和测试模型。
主要参考一下两类:
- The tf.Variable class.
- The tf.train.Saver class.
创建Variable,需将一个tensor传递给Variable()构造函数。可以使用TensorFlow提供的许多ops(操作)初始化张量,参考constants or random values。这些ops都要求指定tensor的shape(形状)。比如
Create two variables.
weights = tf.Variable(tf.random_normal([784, 200], stddev=0.35),
name=”weights”)
biases = tf.Variable(tf.zeros([200]), name=”biases”)
调用tf.Variable()函数在graph中增加以下几个ops:
- 一个Variable
op ,负责保存变量值。
- 一个initializer
op,负责将变量设为初始值,这实际是tf.assign
op。
- 初始值的op,比如zeros
op 。
tf.Variable()
返回一个tf.Variable
类的实例。
使用 with tf.device(…): block,将一个变量安置在一个设备上。
Pin a variable to CPU.
with tf.device(“/cpu:0”):
v = tf.Variable(…)Pin a variable to GPU.
with tf.device(“/gpu:0”):
v = tf.Variable(…)Pin a variable to a particular parameter server task.
with tf.device(“/job:ps/task:7”):
v = tf.Variable(…)
改变变量的一些ops,比如v.assign()
和tf.train.Optimizer
需要与变量在同一个设备上。
在运行模型中其他操作之前,必须先对变量进行初始化。最简单的初始化方法是添加一个对所有变量进行初始化的op,然后再使用model前运行此op。
使用tf.global_variables_initializer()
添加一个op来运行初始化。要在完全构建完模型后,在一个对话(Session)中运行它。
Create two variables.
weights = tf.Variable(tf.random_normal([784, 200], stddev=0.35),
name=”weights”)
biases = tf.Variable(tf.zeros([200]), name=”biases”)
…Add an op to initialize the variables.
init_op = tf.global_variables_initializer()
Later, when launching the model
with tf.Session() as sess:
# Run the init operation.
sess.run(init_op)
…
# Use the model
…
用变量A的值初始化另一个变量B,需使用变量A的属性(property)initialized_value()
。可以直接使用变量A的初始值,也可以用之计算新的值。
Create a variable with a random value.
weights = tf.Variable(tf.random_normal([784, 200], stddev=0.35),
name=”weights”)Create another variable with the same value as ‘weights’.
w2 = tf.Variable(weights.initialized_value(), name=”w2”)
Create another variable with twice the value of ‘weights’
w_twice = tf.Variable(weights.initialized_value() * 2.0, name=”w_twice”)
可以给tf.global_variables_initializer()
添加一个显示列表自定义要初始化的变量。参考Variables Documentation了解更多。
最简单的方法是用tf.train.Saver
对象,此构造函数在graph中为所有变量(or a specified list)添加save和restore ops。saver对象提供运行这些ops的方法,并指定读写checkpoint files的路径。
变量存储在一个二进制文件中,包含从变量名称到张量值的映射。
创建checkpoint files时,可以选择性地选择变量名称来保存。默认情况,它使用每个Variable的Variable.name
属性。
可以使用inspect_checkpoint库查看checkpoint file中的变量,还有print_tensrs_in_checkpoint_file
函数。
用tf.train.Saver()
创建一个Saver
对象来管理模型中所有变量。
Create some variables.
v1 = tf.Variable(…, name=”v1”)
v2 = tf.Variable(…, name=”v2”)
…Add an op to initialize the variables.
init_op = tf.global_variables_initializer()
Add ops to save and restore all the variables.
saver = tf.train.Saver()
Later, launch the model, initialize the variables, do some work, save the variables to disk.
with tf.Session() as sess:
sess.run(init_op)Do some work with the model.
..
Save the variables to disk.
save_path = saver.save(sess, “/tmp/model.ckpt”)
print(“Model saved in file: %s” % save_path)
先初始化变量,再操作模型,最后保存变量。
使用同样的Saver对象恢复变量,恢复变量时,就不用先初始化变量了。
Create some variables.
v1 = tf.Variable(…, name=”v1”)
v2 = tf.Variable(…, name=”v2”)
…Add ops to save and restore all the variables.
saver = tf.train.Saver()
Later, launch the model, use the saver to restore variables from disk, and
do some work with the model.
with tf.Session() as sess:
Restore variables from disk.
saver.restore(sess, “/tmp/model.ckpt”)
print(“Model restored.”)Do some work with the model
…
无初始化操作,先恢复变量,再操模型。
如果不给tf.train.Saver
传递任何参数,Saver会在graph中处理所有变量。每个变量会存在他们创建时的name下。
通过给tf.train.Saver
传递一个Python字典,可以指定保存变量的name。key是要在checkpoint file中使用的name, values指要管理的变量。
Create some variables.
v1 = tf.Variable(…, name=”v1”)
v2 = tf.Variable(…, name=”v2”)
…Add ops to save and restore only ‘v2’ using the name “my_v2”
saver = tf.train.Saver({“my_v2”: v2})
Use the saver object normally after that.
…
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。