当前位置:   article > 正文

大模型从入门到应用——LangChain:记忆(Memory)-[记忆的类型:对话令牌缓冲存储器和基于向量存储的记忆]_langchain vectorstoreretrievermemory

langchain vectorstoreretrievermemory

分类目录:《大模型从入门到应用》总目录

LangChain系列文章:


对话令牌缓冲存储器ConversationTokenBufferMemory

ConversationTokenBufferMemory在内存中保留了最近的一些对话交互,并使用标记长度来确定何时刷新交互,而不是交互数量。

from langchain.memory import ConversationTokenBufferMemory
from langchain.llms import OpenAI
llm = OpenAI()
memory = ConversationTokenBufferMemory(llm=llm, max_token_limit=10)
memory.save_context({"input": "hi"}, {"output": "whats up"})
memory.save_context({"input": "not much you"}, {"output": "not much"})
memory.load_memory_variables({})
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

输出:

{‘history’: ‘Human: not much you\nAI: not much’}

我们还可以将历史记录作为消息列表获取,如果我们正在使用聊天模型,将非常有用:

memory = ConversationTokenBufferMemory(llm=llm, max_token_limit=10, return_messages=True)
memory.save_context({"input": "hi"}, {"output": "whats up"})
memory.save_context({"input": "not much you"}, {"output": "not much"})
  • 1
  • 2
  • 3
在链式模型中的应用

让我们通过一个例子来演示如何在链式模型中使用它,同样设置verbose=True,以便我们可以看到提示信息。

from langchain.chains import ConversationChain
conversation_with_summary = ConversationChain(
    llm=llm, 
    # We set a very low max_token_limit for the purposes of testing.
    memory=ConversationTokenBufferMemory(llm=OpenAI(), max_token_limit=60),
    verbose=True
)
conversation_with_summary.predict(input="Hi, what's up?")
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

日志输出

> Entering new ConversationChain chain...
Prompt after formatting:
The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.

Current conversation:

Human: Hi, what's up?
AI:

> Finished chain.
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

输出:

" Hi there! I'm doing great, just enjoying the day. How about you?"
  • 1

输入:

conversation_with_summary.predict(input="Just working on writing some documentation!")
  • 1

日志输出:

> Entering new ConversationChain chain...
Prompt after formatting:
The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.

Current conversation:
Human: Hi, what's up?
AI:  Hi there! I'm doing great, just enjoying the day. How about you?
Human: Just working on writing some documentation!
AI:

> Finished chain.
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11

输出:

    ' Sounds like a productive day! What kind of documentation are you writing?'
  • 1

输入:

conversation_with_summary.predict(input="For LangChain! Have you heard of it?")
  • 1

日志输出:

> Entering new ConversationChain chain...
Prompt after formatting:
The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.

Current conversation:
Human: Hi, what's up?
AI:  Hi there! I'm doing great, just enjoying the day. How about you?
Human: Just working on writing some documentation!
AI:  Sounds like a productive day! What kind of documentation are you writing?
Human: For LangChain! Have you heard of it?
AI:

> Finished chain.
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13

输出:

    " Yes, I have heard of LangChain! It is a decentralized language-learning platform that connects native speakers and learners in real time. Is that the documentation you're writing about?"
  • 1

输入:

# 我们可以看到这里缓冲区被更新了
conversation_with_summary.predict(input="Haha nope, although a lot of people confuse it for that")
  • 1
  • 2

日志输出:

> Entering new ConversationChain chain...
Prompt after formatting:
The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.

Current conversation:
Human: For LangChain! Have you heard of it?
AI:  Yes, I have heard of LangChain! It is a decentralized language-learning platform that connects native speakers and learners in real time. Is that the documentation you're writing about?
Human: Haha nope, although a lot of people confuse it for that
AI:

> Finished chain.
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11

输出:

" Oh, I see. Is there another language learning platform you're referring to?"
  • 1

基于向量存储的记忆VectorStoreRetrieverMemory

VectorStoreRetrieverMemory将内存存储在VectorDB中,并在每次调用时查询最重要的前 K K K个文档。与大多数其他Memory类不同,它不明确跟踪交互的顺序。在这种情况下,“文档”是先前的对话片段。这对于提及AI在对话中早些时候得知的相关信息非常有用。

from datetime import datetime
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.llms import OpenAI
from langchain.memory import VectorStoreRetrieverMemory
from langchain.chains import ConversationChain
from langchain.prompts import PromptTemplate
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
初始化VectorStore

根据我们选择的存储方式,此步骤可能会有所不同,我们可以查阅相关的VectorStore文档以获取更多详细信息。

import faiss

from langchain.docstore import InMemoryDocstore
from langchain.vectorstores import FAISS

embedding_size = 1536 # Dimensions of the OpenAIEmbeddings
index = faiss.IndexFlatL2(embedding_size)
embedding_fn = OpenAIEmbeddings().embed_query
vectorstore = FAISS(embedding_fn, index, InMemoryDocstore({}), {})
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
创建VectorStoreRetrieverMemory

记忆对象是从VectorStoreRetriever实例化的。

# In actual usage, you would set `k` to be a higher value, but we use k=1 to show that the vector lookup still returns the semantically relevant information
retriever = vectorstore.as_retriever(search_kwargs=dict(k=1))
memory = VectorStoreRetrieverMemory(retriever=retriever)

# When added to an agent, the memory object can save pertinent information from conversations or used tools
memory.save_context({"input": "My favorite food is pizza"}, {"output": "thats good to know"})
memory.save_context({"input": "My favorite sport is soccer"}, {"output": "..."})
memory.save_context({"input": "I don't the Celtics"}, {"output": "ok"}) # 
# Notice the first result returned is the memory pertaining to tax help, which the language model deems more semantically relevant
# to a 1099 than the other documents, despite them both containing numbers.
print(memory.load_memory_variables({"prompt": "what sport should i watch?"})["history"])
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11

输出:

input: My favorite sport is soccer
output: ...
  • 1
  • 2
在对话链中使用

让我们通过一个示例来演示,在此示例中我们继续设置verbose=True以便查看提示。

llm = OpenAI(temperature=0) # Can be any valid LLM
_DEFAULT_TEMPLATE = """The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.

Relevant pieces of previous conversation:
{history}

(You do not need to use these pieces of information if not relevant)

Current conversation:
Human: {input}
AI:"""
PROMPT = PromptTemplate(
    input_variables=["history", "input"], template=_DEFAULT_TEMPLATE
)
conversation_with_summary = ConversationChain(
    llm=llm, 
    prompt=PROMPT,
    # We set a very low max_token_limit for the purposes of testing.
    memory=memory,
    verbose=True
)
conversation_with_summary.predict(input="Hi, my name is Perry, what's up?")
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22

日志输出:

> Entering new ConversationChain chain...
Prompt after formatting:
The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.

Relevant pieces of previous conversation:
input: My favorite food is pizza
output: thats good to know

(You do not need to use these pieces of information if not relevant)

Current conversation:
Human: Hi, my name is Perry, what's up?
AI:

> Finished chain.
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15

输出:

" Hi Perry, I'm doing well. How about you?"
  • 1

输入:

# Here, the basketball related content is surfaced
conversation_with_summary.predict(input="what's my favorite sport?")
  • 1
  • 2

日志输出:

> Entering new ConversationChain chain...
Prompt after formatting:
The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.

Relevant pieces of previous conversation:
input: My favorite sport is soccer
output: ...

(You do not need to use these pieces of information if not relevant)

Current conversation:
Human: what's my favorite sport?
AI:

> Finished chain.
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15

输出:

  ' You told me earlier that your favorite sport is soccer.'
  • 1

输入:

# Even though the language model is stateless, since relavent memory is fetched, it can "reason" about the time.
# Timestamping memories and data is useful in general to let the agent determine temporal relevance
conversation_with_summary.predict(input="Whats my favorite food")
  • 1
  • 2
  • 3

日志输出:

> Entering new ConversationChain chain...
Prompt after formatting:
The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.

Relevant pieces of previous conversation:
input: My favorite food is pizza
output: thats good to know

(You do not need to use these pieces of information if not relevant)

Current conversation:
Human: Whats my favorite food
AI:

> Finished chain.
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15

输出:

  ' You said your favorite food is pizza.'
  • 1

输入:

# The memories from the conversation are automatically stored,
# since this query best matches the introduction chat above,
# the agent is able to 'remember' the user's name.
conversation_with_summary.predict(input="What's my name?")
  • 1
  • 2
  • 3
  • 4

日志输出:

> Entering new ConversationChain chain...
Prompt after formatting:
The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.

Relevant pieces of previous conversation:
input: Hi, my name is Perry, what's up?
response:  Hi Perry, I'm doing well. How about you?

(You do not need to use these pieces of information if not relevant)

Current conversation:
Human: What's my name?
AI:

> Finished chain.
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15

输出:

' Your name is Perry.'
  • 1

参考文献:
[1] LangChain官方网站:https://www.langchain.com/
[2] LangChain

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小小林熬夜学编程/article/detail/100571
推荐阅读
相关标签