当前位置:   article > 正文

使用vgg16模型进行图片预测_如何用已经训练好的vgg模型预测图片

如何用已经训练好的vgg模型预测图片

使用vgg16模型进行图片预测 #

前面我们学习了使用cifra10来判断图片的类别,今天我们使用更加强大的已经训练好的模型来预测图片的类别,那就是vgg16,对应的供keras使用的模型人家已经帮我们训练好,我可不想卖肾来买一个gpu。。。
对应的模型在 ‘vgg16’ 可以下载。估计被墙了,附上链接(http://pan.baidu.com/s/1qX0CJSC)
附上我的github(https://github.com/HadXu/machine-learning)

导入必要的库

from keras.models import Sequential
from keras.layers.core import Flatten, Dense, Dropout
from keras.layers.convolutional import Convolution2D, MaxPooling2D, ZeroPadding2D
from keras.optimizers import SGD
import cv2, numpy as np
  • 1
  • 2
  • 3
  • 4
  • 5
Using Theano backend.
D:\Anaconda\lib\site-packages\theano-0.8.0.dev0-py2.7.egg\theano\tensor\signal\downsample.py:5: UserWarning: downsample module has been moved to the pool module.
  warnings.warn("downsample module has been moved to the pool module.")
  • 1
  • 2
  • 3

使用keras建立vgg16模型

def VGG_16(weights_path=None):
    model = Sequential()
    model.add(ZeroPadding2D((1,1),input_shape=(3,224,224)))
    model.add(Convolution2D(64, 3, 3, activation='relu'))
    model.add(ZeroPadding2D((1,1))
  • 1
  • 2
  • 3
  • 4
  • 5
本文内容由网友自发贡献,转载请注明出处:【wpsshop博客】
推荐阅读
相关标签
  

闽ICP备14008679号