当前位置:   article > 正文

Hive之窗口函数lag()/lead()_hive lag和lead函数

hive lag和lead函数

一、函数介绍

lag()与lead函数是跟偏移量相关的两个分析函数

通过这两个函数可以在一次查询中取出同一字段的前N行的数据(lag)和后N行的数据(lead)作为独立的列,从而更方便地进行进行数据过滤,该操作可代替表的自联接,且效率更高

lag()/lead()

lag(col,n,DEFAULT)用于统计窗口内往上第n行值
 第一个参数为列名
 第二个参数为往上第n行(可选,默认为1)
 第三个参数为默认值(当往上第n行为NULL时候,取默认值,如不指定,则为NULL)

lead()函数与lag()函数相反,用于统计窗口内往下第n行值

over()
表示lag()与lead()操作的数据都在over()的范围内,里面可以使用以下子句
 partition by 语句(用于分组)
 order by 语句()用于排序)
如:over(partition by a order by b) 表示以a字段进行分组,再以b字段进行排序,对数据进行查询

二、应用场景

1、查找前一行或前N行的数据

2、比较相邻行的数据

3、查询n天内值是否连续增长的

三、实践案例

有一张表kd_stock_history_info,里面有code(编码),date(日期),amount(销售额)三个字段,表数据如下:

img

通过hive如何获取到连续n天是增长状态的编码。例如查询2023-01-10这天的数据,也就是从2023-01-10这天往前数三天,看这三天的数据中amount是否连续增长,表中1001就不是,1002则符合。

  1. SELECT
  2. code,
  3. `date`,
  4. amount,
  5. LAG(amount) OVER (PARTITION by code ORDER BY `date`) AS prev_sales,
  6. amount - LAG(amount) OVER (PARTITION by code ORDER BY `date`) AS sales_diff
  7. FROM
  8. kd_stock_history_info
  9. where
  10. `date` BETWEEN DATE_SUB(TO_DATE('2023-01-10'), 2) AND TO_DATE('2023-01-10');

img

 为了更美观一些,调整lag()函数默认值

  1. SELECT
  2. code,
  3. `date`,
  4. amount,
  5. LAG(amount,1,amount) OVER (PARTITION by code ORDER BY `date`) AS prev_sales,
  6. amount - LAG(amount,1,amount) OVER (PARTITION by code ORDER BY `date`) AS sales_diff
  7. FROM
  8. kd_stock_history_info
  9. where
  10. `date` BETWEEN DATE_SUB(TO_DATE('2023-01-10'), 2) AND TO_DATE('2023-01-10');

img

最终代码:

  1. SELECT code,min(sales_diff) min_sales_diff from (
  2. SELECT
  3. code,
  4. `date`,
  5. amount,
  6. LAG(amount,1,amount) OVER (PARTITION by code ORDER BY `date`) AS prev_sales,
  7. amount - LAG(amount,1,amount) OVER (PARTITION by code ORDER BY `date`) AS sales_diff
  8. FROM
  9. kd_stock_history_info
  10. where
  11. `date` BETWEEN DATE_SUB(TO_DATE('2023-01-10'), 2) AND TO_DATE('2023-01-10')
  12. ) a
  13. group by code
  14. having min_sales_diff >= 0;

 更多资料:

Hive Lag函数用法介绍_笔记大全_设计学院 (python100.com)

Hive窗口函数04-LAG、LEAD、FIRST_VALUE、LAST_VALUE-腾讯云开发者社区-腾讯云 (tencent.com)

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小小林熬夜学编程/article/detail/109911
推荐阅读
  

闽ICP备14008679号