当前位置:   article > 正文

手把手教你训练自己的Mask R-CNN图像实例分割模型(PyTorch官方教程)_mask rcnn标注训练自己的模型pytorch

mask rcnn标注训练自己的模型pytorch

近来在学习图像分割的相关算法,准备试试看Mask R-CNN的效果。

关于Mask R-CNN的详细理论说明,可以参见原作论文https://arxiv.org/abs/1703.06870,网上也有大量解读的文章。本篇博客主要是参考了PyTorch官方给出的训练教程,将如何在自己的数据集上训练Mask R-CNN模型的过程记录下来,希望能为感兴趣的读者提供一些帮助。

PyTorch官方教程(Object Detection finetuning tutorial):

https://github.com/pytorch/tutorials/blob/master/_static/torchvision_finetuning_instance_segmentation.ipynb

或:

https://pytorch.org/tutorials/intermediate/torchvision_tutorial.html

需要注意的是,TorchVision需要0.3之后的版本才可以使用。

目录

准备工作

数据集

定义模型

训练模型

1. 准备工作

2. 数据增强/转换

3. 训练

测试模型


 

准备工作

安装coco的api,主要用到其中的IOU计算的库来评价模型的性能。

  1. git clone https://github.com/cocodataset/cocoapi.git
  2. cd cocoapi/PythonAPI
  3. python setup.py build_ext install

API的安装也可以参考另一篇:

https://blog.csdn.net/u013685264/article/details/100331064

数据集

本教程使用Penn-Fudan的行人检测和分割数据集来训练Mask R-CNN实例分割模型。Penn-Fudan数据集中有170张图像,包含345个行人的实例。图像中场景主要是校园和城市街景,每张图中至少有一个行人,具体的介绍和下载地址如下:

https://www.cis.upenn.edu/~jshi/ped_html/

  1. # 下载Penn-Fudan dataset
  2. wget https://www.cis.upenn.edu/~jshi/ped_html/PennFudanPed.zip
  3. # 解压到当前目录
  4. unzip PennFudanPed.zip

解压后的目录结构如下:

先看看Penn-Fudan数据集中的图像和mask:

  1. from PIL import Image
  2. Image.open('PennFudanPed/PNGImages/FudanPed00001.png')
  3. mask = Image.open('PennFudanPed/PedMasks/FudanPed00001_mask.png')
  4. mask.putpalette([
  5. 0, 0, 0, # black background
  6. 255, 0, 0, # index 1 is red
  7. 255, 255, 0, # index 2 is yellow
  8. 255, 153, 0, # index 3 is orange
  9. ])
  10. mask

    

每一张图像都有对应的mask标注,不同的颜色表示不同的实例。在训练模型之前,需要写好数据集的载入接口。

  1. import os
  2. import torch
  3. import numpy as np
  4. import torch.utils.data
  5. from PIL import Image
  6. class PennFudanDataset(torch.utils.data.Dataset):
  7. def __init__(self, root, transforms=None):
  8. self.root = root
  9. self.transforms = transforms
  10. # load all image files, sorting them to ensure that they are aligned
  11. self.imgs = list(sorted(os.listdir(os.path.join(root, "PNGImages"))))
  12. self.masks = list(sorted(os.listdir(os.path.join(root, "PedMasks"))))
  13. def __getitem__(self, idx):
  14. # load images ad masks
  15. img_path = os.path.join(self.root, "PNGImages", self.imgs[idx])
  16. mask_path = os.path.join(self.root, "PedMasks", self.masks[idx])
  17. img = Image.open(img_path).convert("RGB")
  18. # note that we haven't converted the mask to RGB,
  19. # because each color corresponds to a different instance with 0 being background
  20. mask = Image.open(mask_path)
  21. mask = np.array(mask)
  22. # instances are encoded as different colors
  23. obj_ids = np.unique(mask)
  24. # first id is the background, so remove it
  25. obj_ids = obj_ids[1:]
  26. # split the color-encoded mask into a set of binary masks
  27. masks = mask == obj_ids[:, None, None]
  28. # get bounding box coordinates for each mask
  29. num_objs = len(obj_ids)
  30. boxes = []
  31. for i in range(num_objs):
  32. pos = np.where(masks[i])
  33. xmin = np.min(pos[1])
  34. xmax = np.max(pos[1])
  35. ymin = np.min(pos[0])
  36. ymax = np.max(pos[0])
  37. boxes.append([xmin, ymin, xmax, ymax])
  38. boxes = torch.as_tensor(boxes, dtype=torch.float32)
  39. # there is only one class
  40. labels = torch.ones((num_objs,), dtype=torch.int64)
  41. masks = torch.as_tensor(masks, dtype=torch.uint8)
  42. image_id = torch.tensor([idx])
  43. area = (boxes[:, 3] - boxes[:, 1]) * (boxes[:, 2] - boxes[:, 0])
  44. # suppose all instances are not crowd
  45. iscrowd = torch.zeros((num_objs,), dtype=torch.int64)
  46. target = {}
  47. target["boxes"] = boxes
  48. target["labels"] = labels
  49. target["masks"] = masks
  50. target["image_id"] = image_id
  51. target["area"] = area
  52. target["iscrowd"] = iscrowd
  53. if self.transforms is not None:
  54. img, target = self.transforms(img, target)
  55. return img, target
  56. def __len__(self):
  57. return len(self.imgs)

检查一下上面接口返回的dataset的内部结构

  1. dataset = PennFudanDataset('PennFudanPed/')
  2. dataset[0]

可以看到,dataset返回了一个PIL.Image以及一个dictionary,包含boxes、labels和masks等域,这都是训练的时候网络需要用到的。

定义模型

Mask R-CNN是基于Faster R-CNN改造而来的。Faster R-CNN用于预测图像中潜在的目标框和分类得分,而Mask R-CNN在此基础上加了一个额外的分支,用于预测每个实例的分割mask。

有两种方式来修改torchvision modelzoo中的模型,以达到预期的目的。第一种,采用预训练的模型,在修改网络最后一层后finetune。第二种,根据需要替换掉模型中的骨干网络,如将ResNet替换成MobileNet等。

1. Finetune预训练的模型

场景:利用COCO上预训练的模型,为指定类别的任务进行finetune。

  1. import torchvision
  2. from torchvision.models.detection.faster_rcnn import FastRCNNPredictor
  3. # load a model pre-trained on COCO
  4. model = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=True)
  5. # replace the classifier with a new one, that has num_classes which is user-defined
  6. num_classes = 2 # 1 class (person) + background
  7. # get number of input features for the classifier
  8. in_features = model.roi_heads.box_predictor.cls_score.in_features
  9. # replace the pre-trained head with a new one
  10. model.roi_heads.box_predictor = FastRCNNPredictor(in_features, num_classes)

2. 替换模型的骨干网络

场景:替换掉模型的骨干网络。举例来说,默认的骨干网络(ResNet-50)对于某些应用来说可能参数过多不易部署,可以考虑将其替换成更轻量的网络(如MobileNet)。

  1. import torchvision
  2. from torchvision.models.detection import FasterRCNN
  3. from torchvision.models.detection.rpn import AnchorGenerator
  4. # load a pre-trained model for classification and return only the features
  5. backbone = torchvision.models.mobilenet_v2(pretrained=True).features
  6. # FasterRCNN needs to know the number of output channels in a backbone.
  7. # For mobilenet_v2, it's 1280. So we need to add it here
  8. backbone.out_channels = 1280
  9. # let's make the RPN generate 5 x 3 anchors per spatial
  10. # location, with 5 different sizes and 3 different aspect
  11. # ratios. We have a Tuple[Tuple[int]] because each feature
  12. # map could potentially have different sizes and aspect ratios
  13. anchor_generator = AnchorGenerator(sizes=((32, 64, 128, 256, 512),),
  14. aspect_ratios=((0.5, 1.0, 2.0),))
  15. # let's define what are the feature maps that we will use to perform the region of
  16. # interest cropping, as well as the size of the crop after rescaling.
  17. # if your backbone returns a Tensor, featmap_names is expected to
  18. # be [0]. More generally, the backbone should return an OrderedDict[Tensor],
  19. # and in featmap_names you can choose which feature maps to use.
  20. roi_pooler = torchvision.ops.MultiScaleRoIAlign(featmap_names=[0],
  21. output_size=7,
  22. sampling_ratio=2)
  23. # put the pieces together inside a FasterRCNN model
  24. model = FasterRCNN(backbone,
  25. num_classes=2,
  26. rpn_anchor_generator=anchor_generator,
  27. box_roi_pool=roi_pooler)

3. 定义Mask R-CNN模型

言归正传,本文的目的是在PennFudan数据集上训练Mask R-CNN实例分割模型,即上述第一种情况。在torchvision.models.detection中有官方的网络定义和接口的文件,可以直接使用。

  1. import torchvision
  2. from torchvision.models.detection.faster_rcnn import FastRCNNPredictor
  3. from torchvision.models.detection.mask_rcnn import MaskRCNNPredictor
  4. def get_instance_segmentation_model(num_classes):
  5. # load an instance segmentation model pre-trained on COCO
  6. model = torchvision.models.detection.maskrcnn_resnet50_fpn(pretrained=True)
  7. # get the number of input features for the classifier
  8. in_features = model.roi_heads.box_predictor.cls_score.in_features
  9. # replace the pre-trained head with a new one
  10. model.roi_heads.box_predictor = FastRCNNPredictor(in_features, num_classes)
  11. # now get the number of input features for the mask classifier
  12. in_features_mask = model.roi_heads.mask_predictor.conv5_mask.in_channels
  13. hidden_layer = 256
  14. # and replace the mask predictor with a new one
  15. model.roi_heads.mask_predictor = MaskRCNNPredictor(in_features_mask,
  16. hidden_layer,
  17. num_classes)
  18. return model

至此,模型就定义好了,接下来可以在PennFudan数据集进行训练和测试了。

训练模型

1. 准备工作

在PyTorch官方的references/detection/中,有一些封装好的用于模型训练和测试的函数,其中references/detection/engine.py、references/detection/utils.py、references/detection/transforms.py是我们需要用到的。首先,将这些文件拷贝过来

  1. # Download TorchVision repo to use some files from references/detection
  2. git clone https://github.com/pytorch/vision.git
  3. cd vision
  4. git checkout v0.4.0
  5. cp references/detection/utils.py ../
  6. cp references/detection/transforms.py ../
  7. cp references/detection/coco_eval.py ../
  8. cp references/detection/engine.py ../
  9. cp references/detection/coco_utils.py ../

2. 数据增强/转换

在图像输入到网络前,需要对其进行旋转操作(数据增强)。这里需要注意的是,由于Mask R-CNN模型本身可以处理归一化及尺度变化的问题,因而无需在这里进行mean/std normalization或图像缩放的操作。

  1. import utils
  2. import transforms as T
  3. from engine import train_one_epoch, evaluate
  4. def get_transform(train):
  5. transforms = []
  6. # converts the image, a PIL image, into a PyTorch Tensor
  7. transforms.append(T.ToTensor())
  8. if train:
  9. # during training, randomly flip the training images
  10. # and ground-truth for data augmentation
  11. transforms.append(T.RandomHorizontalFlip(0.5))
  12. return T.Compose(transforms)

3. 训练

至此,数据集、模型、数据增强的部分都已经写好。在模型初始化、优化器及学习率调整策略选定后,就可以开始训练了。这里,设置模型训练10个epochs,并且在每个epoch完成后在测试集上对模型的性能进行评价。

  1. # use the PennFudan dataset and defined transformations
  2. dataset = PennFudanDataset('PennFudanPed', get_transform(train=True))
  3. dataset_test = PennFudanDataset('PennFudanPed', get_transform(train=False))
  4. # split the dataset in train and test set
  5. torch.manual_seed(1)
  6. indices = torch.randperm(len(dataset)).tolist()
  7. dataset = torch.utils.data.Subset(dataset, indices[:-50])
  8. dataset_test = torch.utils.data.Subset(dataset_test, indices[-50:])
  9. # define training and validation data loaders
  10. data_loader = torch.utils.data.DataLoader(
  11. dataset, batch_size=2, shuffle=True, num_workers=4,
  12. collate_fn=utils.collate_fn)
  13. data_loader_test = torch.utils.data.DataLoader(
  14. dataset_test, batch_size=1, shuffle=False, num_workers=4,
  15. collate_fn=utils.collate_fn)
  16. device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
  17. # the dataset has two classes only - background and person
  18. num_classes = 2
  19. # get the model using the helper function
  20. model = get_instance_segmentation_model(num_classes)
  21. # move model to the right device
  22. model.to(device)
  23. # construct an optimizer
  24. params = [p for p in model.parameters() if p.requires_grad]
  25. optimizer = torch.optim.SGD(params, lr=0.005,
  26. momentum=0.9, weight_decay=0.0005)
  27. # the learning rate scheduler decreases the learning rate by 10x every 3 epochs
  28. lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer,
  29. step_size=3,
  30. gamma=0.1)
  31. # training
  32. num_epochs = 10
  33. for epoch in range(num_epochs):
  34. # train for one epoch, printing every 10 iterations
  35. train_one_epoch(model, optimizer, data_loader, device, epoch, print_freq=10)
  36. # update the learning rate
  37. lr_scheduler.step()
  38. # evaluate on the test dataset
  39. evaluate(model, data_loader_test, device=device)

测试模型

现在,模型已经训练好了,来检查一下模型在测试图像上预测的结果。

  1. # pick one image from the test set
  2. img, _ = dataset_test[0]
  3. # put the model in evaluation mode
  4. model.eval()
  5. with torch.no_grad():
  6. prediction = model([img.to(device)])

这里输出的prediction中,包含了在图像中预测出的boxes、labels、masks和scores等信息。

接下来,将测试图像及对应的预测结果可视化出来,看看效果如何。

  1. Image.fromarray(img.mul(255).permute(1, 2, 0).byte().numpy())
  2. Image.fromarray(prediction[0]['masks'][0, 0].mul(255).byte().cpu().numpy())

   

可以看到,分割的结果还是不错的。到此,训练自己的Mask R-CNN模型就完成了。

 

Bug解决

在测试模型性能的时候,如果出现ValueError: Does not understand character buffer dtype format string ('?'):

  1. File "build/bdist.linux-x86_64/egg/pycocotools/mask.py", line 82, in encode
  2. File "pycocotools/_mask.pyx", line 137, in pycocotools._mask.encode
  3. ValueError: Does not understand character buffer dtype format string ('?')

通过修改coco_eval.py中mask_util.encode一行,添加dtype=np.uint8,即可搞定。

  1. In coco_eval.py:
  2. rles = [
  3. mask_util.encode(np.array(mask[0, :, :, np.newaxis], dtype=np.uint8, order="F"))[0]
  4. for mask in masks
  5. ]

 

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小小林熬夜学编程/article/detail/122365
推荐阅读
相关标签
  

闽ICP备14008679号