赞
踩
微调
大语言模型-ChatGLM-Tuning
大语言模型-微调chatglm6b
大语言模型-中文chatGLM-LLAMA微调
大语言模型-alpaca-lora
本地知识库
大语言模型2-document ai解读
大语言模型-DocumentSearch解读
大语言模型-中文Langchain
本文解读代码的地址:
https://github.com/27182812/ChatGLM-LLaMA-chinese-insturct
中文instruct在chatGLM, LLAMA上的表现
json的预处理
相比大语言模型-ChatGLM-Tuning中,是两个函数都放在了dataprocess的一个类中进行,初步看起来需要改变的几乎相同
对于chatGLM和之前文章几乎相同,这里主要关注一下LLAMA
数据
def generate_prompt(data_point): # sorry about the formatting disaster gotta move fast if data_point["input"]: return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. ### Instruction: {data_point["instruction"]} ### Input: {data_point["input"]} ### Response: {data_point["output"]}""" else: return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {data_point["instruction"]} ### Response: {data_point["output"]}""" def tokenize(prompt): # there's probably a way to do this with the tokenizer settings # but again, gotta move fast result = tokenizer( prompt, truncation=True, max_length=CUTOFF_LEN + 1, padding="max_length", ) return { "input_ids": result["input_ids"][:-1], "attention_mask": result["attention_mask"][:-1], }
模型
model = LlamaForCausalLM.from_pretrained( "decapoda-research/llama-7b-hf", load_in_8bit=True, device_map="auto", ) tokenizer = LlamaTokenizer.from_pretrained( "decapoda-research/llama-7b-hf", add_eos_token=True ) model = prepare_model_for_int8_training(model) config = LoraConfig( r=LORA_R, lora_alpha=LORA_ALPHA, target_modules=["q_proj", "v_proj"], lora_dropout=LORA_DROPOUT, bias="none", task_type="CAUSAL_LM", ) model = get_peft_model(model, config) tokenizer.pad_token_id = 0 # unk. we want this to be different from the eos token
微调
data = data.shuffle().map(lambda x: tokenize(generate_prompt(x))) trainer = transformers.Trainer( model=model, train_dataset=data["train"], args=transformers.TrainingArguments( per_device_train_batch_size=MICRO_BATCH_SIZE, gradient_accumulation_steps=GRADIENT_ACCUMULATION_STEPS, warmup_steps=100, num_train_epochs=EPOCHS, learning_rate=LEARNING_RATE, fp16=True, logging_steps=20, output_dir="qys-alpaca-chinese", save_total_limit=3, ), data_collator=transformers.DataCollatorForLanguageModeling(tokenizer, mlm=False), ) model.config.use_cache = False trainer.train(resume_from_checkpoint=False) # trainer.train() model.save_pretrained("qys-alpaca-chinese")
推理代码
tokenizer = LlamaTokenizer.from_pretrained("decapoda-research/llama-7b-hf") model = LlamaForCausalLM.from_pretrained( "decapoda-research/llama-7b-hf", load_in_8bit=True, torch_dtype=torch.float16, device_map="auto", ) model = PeftModel.from_pretrained( model, "./qys-alpaca-chinese", torch_dtype=torch.float16 ) def generate_prompt(instruction, input=None): if input: return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. ### Instruction: {instruction} ### Input: {input} ### Response:""" else: return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {instruction} ### Response:""" instructions = json.load(open("data/zh-data01.json")) answers = [] with torch.no_grad(): for idx, item in enumerate(instructions[12:18]): feature = format_example(item) input_text = feature['context'] print(input_text) inputs = tokenizer(input_text, return_tensors="pt") input_ids = inputs["input_ids"].cuda() generation_config = GenerationConfig( temperature=0.1, top_p=0.75, top_k=40, num_beams=4, ) generation_output = model.generate( input_ids=input_ids, generation_config=generation_config, return_dict_in_generate=True, output_scores=True, max_new_tokens=256, ) s = generation_output.sequences[0] output = tokenizer.decode(s) print(output.strip()) print("--------------------------------------------")
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。