当前位置:   article > 正文

AI上推荐 之 多任务loss优化(自适应权重篇)_多分类任务的优化技术

多分类任务的优化技术

1. 写在前面

多任务学习中,往往会将多个相关的任务放在一起来学习。例如在推荐系统中,排序模型同时预估候选的点击率和浏览时间。相对于单任务学习,多任务学习有以下优势:

  • 多个任务共享一个模型,占用内存量减少;
  • 多个任务一次前向计算得出结果,推理速度增加;
  • 关联任务通过共享信息,相互补充,可以提升彼此的表现。

前面的一篇文章,主要是从模型结构的角度聊了下多任务学习,介绍了工业界非常经典也常用的MMOE模型,然而,对于多任务学习, Loss的优化也非常重要, 因为我们知道通过多个目标去指导网络进行统一的训练,这些目标之间有没有冲突? 多个目标loss之间如何配合? loss的规模是否一致? 等等, 所以这篇文章, 通过几篇paper, 来统一梳理下,在多任务模型训练时, 关于多个loss之间优化常用到的相关思路, 当然这些思路不仅适用于推荐, 只要是多个任务,多个loss同时指导模型训练的场景,比如cv里面的全景感知系统(可能需要同时做目标识别,分割,分类),都可以考虑这些思路方法, 所以这次整理的更像是多任务学习loss优化的一些范式思想。这篇文章会超级长,总结了四篇经典loss优化自适应权重paper的精华内容并通过代码复现和实验进行了对比。 老规矩:根据目录,各取所需即可

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小小林熬夜学编程/article/detail/133408
推荐阅读
相关标签