当前位置:   article > 正文

线性代数的学习和整理5: 矩阵的加减乘除及其几何意义_矩阵减法

矩阵减法

目录

1 矩阵加法

1.1 矩阵加法的定义

1.2 加法的属性

1.2.1 只有同类型,相同n*m的矩阵才可以相加

1.2.1 矩阵加法的可交换律:

1.2.2 矩阵加法的可结合律:

1.3矩阵加法的几何意义

2  矩阵的减法

2.1 矩阵减法定义和原理基本同 矩阵的加法

2.2 矩阵减法的几何意义

3 矩阵标量乘法/ 也称 数乘

3.1 数乘的定义

3.2 矩阵的标量乘法的性质

3.3 几何意义:就是 正向/反向的伸缩

4 左乘 & 右乘 (很简单概念,但是需要界定语言的严谨性)

4.1 搞清楚主体:谁的左乘?右乘?

4.2 搞清楚方向:什么是左乘和右乘 

4.3 一般的线性代数公式  AX=Y, 表示 x 左乘矩阵A

5 矩阵的点乘:得到的点积/内积

5.1 详细的矩阵乘法规则

5.1.1 计算规则是:只有形如 n*m矩阵* m*k的矩阵的矩阵才可以相乘

5.1.2  矩阵的乘法不符合交换性,不能交换次序,左乘 ≠ 右乘,A*B ≠B*A

5.2  矩阵点乘法:得到的内积/点积的几何意义

6 矩阵的叉乘:得到的外积/叉积

6.1 定义

6.2 几何意义

7 矩阵求逆(逆矩阵)

7.1 逆矩阵定义

7.2 求逆矩阵的方法

7.3 求逆矩阵的规则

7.3.1 并不是所有的矩阵都可以求逆矩阵

7.4 逆矩阵的函数意义

7.5 逆矩阵的几何意义

8  带引号的“矩阵除法”

8.1 一般没有矩阵除法的说法,但可以这么理解

8.2 矩阵除法的几何意义(?)


1 矩阵加法

1.1 矩阵加法的定义

  • 矩阵加法一般是指两个矩阵把其相对应元素加在一起的运算。 

1.2 加法的属性

可结合律和可交换律

1.2.1 只有同类型,相同n*m的矩阵才可以相加

  • (1,2)+(1,2,3) 无法计算
  • 如何合法可加,生成的结果也是一个向量

1.2.1 矩阵加法的可交换律:

  • A+B=B+A
  • 看坐标系,表示从上面走先走b,再走a到达C,和从下面先走a,再走b到达C是一样的。

1.2.2 矩阵加法的可结合律:

  • (A+B)+C=A+(B+C)
  • 看坐标系,表示3个矩阵相加,先计算A+B,再计算A+B+C 和先计算B+C 结果是一样的。

1.3矩阵加法的几何意义

  • 看下图,实际是向量的相加,是有方向性的,不是简单的相加
  • 而无论2个,还是3个向量相加,都可以用三角形发展继续相加,生成的新向量就是矩阵相加的和----一个新向量

 

 

2  矩阵的减法

2.1 矩阵减法定义和原理基本同 矩阵的加法

  • 虽然一般不说矩阵减法,但原理上OK,EXCEL里计算也OK

2.2 矩阵减法的几何意义

  • 矩阵的减法和加法其实是类似的,但是几何意义不同
  • 加法是2个向量,首尾相接,形成新的向量--和向量
  • 减法是1个减数向量,开始指向另1个被减数的向量,形成的新向量:差向量。如可以可以挪到原点,从原点出发,
  • 可以看出如下图,和从原点出发,而数字为减法后得数的终点作为坐标的向量,是相同的。
  • 为什么一定要挪回到原点看,因为向量空间里要求所有的向量都是从原点出发,终点坐标代表其坐标的向量。

 

3 矩阵标量乘法/ 也称 数乘

3.1 数乘的定义

  • λ*(A+B) =λ*A+λ*B
  • 就是  标量*矩阵对应位置元素,类整数的乘法

3.2 矩阵的标量乘法的性质

  • 可结合性:a*X={ax1,ax2,ax3.....axn]
  • 可交换性:  a*X=X*a

3.3 几何意义:就是 正向/反向的伸缩

  • 如果乘以正数,就是正向伸缩
  • 如果乘以负数,就是反向伸缩
  • 如果乘以a>1,就是伸长,
  • 如果a=0.5 就是缩短

4 左乘 & 右乘 (很简单概念,但是需要界定语言的严谨性)

4.1 搞清楚主体:谁的左乘?右乘?

  • 比如 Ax=y
  • 主体:变量?   那变量 x 左乘矩阵A
  • 主题,矩阵? 那矩阵A 右乘变量x

4.2 搞清楚方向:什么是左乘和右乘 

  • A*B ≠ B*A
  • A*B 是A右乘B, 是A的右边乘以B
  • B*A  是A左乘B,是A的左边乘以B

4.3 一般的线性代数公式  AX=Y, 表示 x 左乘矩阵A

  • 一般的线性代数公式  AX=Y, 表示 x 左乘矩阵A

5 矩阵的点乘:得到的点积/内积

  • 在EXCEL里,使用函数 mmult()+ 选择好生成矩阵的长宽区域+数组公式
  • 注意要提前计算好 目标矩阵的大小,比如 n*m矩阵* m*k的矩阵,结果是 m*k的矩阵

5.1 详细的矩阵乘法规则

5.1.1 计算规则是:只有形如 n*m矩阵* m*k的矩阵的矩阵才可以相乘

并不是任意2个矩阵都可以相乘

  • 只有形如 n*m矩阵* m*k的矩阵的矩阵才可以相乘,也就是前者的列数=后者的行数
  • aij= 矩阵1的第i行* 矩阵2的第j列的结果

本质规则

  • 是两个矩阵元素的投射形成的新矩阵

5.1.2  矩阵的乘法不符合交换性,不能交换次序,左乘 ≠ 右乘,A*B ≠B*A

  • 矩阵乘法要详细考虑次序,不能交换
  • A*B ≠ B*A
  • 矩阵乘法的具体公式:需要考虑展开,后面详细再说

5.2  矩阵点乘法:得到的内积/点积的几何意义

 

6 矩阵的叉乘/向量乘法:得到的外积/叉积

6.1 定义

  • 没学过,还不太清楚下面是转载的外积的内容
  • 有点像把矩阵的每个元素,当成一个分块矩阵,分别与另外一个矩阵相乘
  • 得到的结果是一个矩阵

 

6.2 几何意义

  • 据说,2个向量的外积表现为这2个向量所构成的平行六面体的体积!

7 矩阵求逆(逆矩阵)

7.1 逆矩阵定义

  • 矩阵A为n阶方阵,若存在n阶矩阵B,使得矩阵A、B的乘积为单位阵,则称A为可逆阵,B为A的逆矩阵。A*B=I/E
  • 若方阵的逆阵存在,则称为可逆矩阵非奇异矩阵,且其逆矩阵唯一。
  • 逆矩阵比然唯一

7.2 求逆矩阵的方法

  • 主要是利用 A*A-=I 标准矩阵

7.3 求逆矩阵的规则

7.3.1 并不是所有的矩阵都可以求逆矩阵

  • 并不是所有的矩阵都可以求逆矩阵
  • 特殊条件是:
  1. 方阵
  2. 满秩的
  3. 双射矩阵

满足这些条件的矩阵才可以求逆

7.3.2 比较方便的快速判断方法,判断标准如下

  1. 如果矩阵的行列式值是否为0,若不为0,则可逆;
  2. 看这个矩阵的秩是否为n,若为n,则矩阵可逆;如果小于n,不可逆。
  3. 若存在一个矩阵B,使矩阵A使得AB=BA=E,则矩阵A可逆;
  4. 对于齐次线性方程AX=0,若方程只有零解,那么这个矩阵可逆;
  5. 对于非齐次线性方程AX=b,若方程只有特解,那么这个矩阵可逆,反之若有无穷解则矩阵不可逆。

7.4 逆矩阵的函数意义

  • 如果把矩阵看成函数
  • 那么函数,只有当定义域到值域是单射,且值域都是满射时,也就是定义域到值域是双射时才会有反函数
  • 同理,也只有这时,矩阵才会有逆矩阵。

7.5 逆矩阵的几何意义

  • 常见矩阵乘法 Ax=y,可以认为是把x从自然基底(正交的一组特殊基底)变换为斜的新坐标系。
  • 那么,逆矩阵就是反过来,把斜坐标系再给转换为正交的自然基底。

百度安全验证https://baijiahao.baidu.com/s?id=1731151185141060114&wfr=spider&for=pc

8  带引号的“矩阵除法”

8.1 一般没有矩阵除法的说法,但可以这么理解

  • ​这个除法实际只是一个类比,并不是真正的 矩阵除法!

这个题目的意思是:

如果知道 ,A矩阵*B矩阵=C矩阵

但是A矩阵已知,C矩阵也已知,如何求B矩阵?

A矩阵*B?矩阵=C矩阵

A*B?=C  那么B?=?    其实B=A-*C  而不是C*A-

  • 一定注意矩阵的次序,很重要!!
  • 正确的,B=A~*C,而且B !=C*A-
  • 错误的,B =C*A-
  • 因为如下推导
  1. A*B= A*A-*C   =I*C=C
  2. A*B= A*C*A-  !=C
     

8.2 矩阵除法的几何意义(?)

  • 这个应该就是函数变换吧,暂时不知道其几何意义是什么
  • A*B= A*A-*C   =I*C=C
  • B=A-*C 

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小小林熬夜学编程/article/detail/144240
推荐阅读
相关标签
  

闽ICP备14008679号