当前位置:   article > 正文

NSGA2算法原理及python实现_nsga2 python

nsga2 python

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
git参考代码

# Program Name: NSGA-II.py
# Description: This is a python implementation of Prof. Kalyanmoy Deb's popular NSGA-II algorithm
# Author: Haris Ali Khan
# Supervisor: Prof. Manoj Kumar Tiwari
"""
优化目标:
    min(f1(x), f2(x))
        f1(x) = -x^2
        f2(X) = -(x-2)^2
    s.t x~[-55, 55]
pop_size = 20
max_gen  =  921

"""
#Importing required modules
import math
import random
import matplotlib.pyplot as plt

#First function to optimize
def function1(x):
    value = -x**2
    return value

#Second function to optimize
def function2(x):
    value = -(x-2)**2
    return value

#Function to find index of list
def index_of(a,list):
    for i in range(0,len(list)):
        if list[i] == a:
            return i
    return -1

#Function to sort by values
def sort_by_values(list1, values):
    sorted_list = []
    while(len(sorted_list)!=len(list1)):
        if index_of(min(values),values) in list1:
            sorted_list.append(index_of(min(values),values))
        values[index_of(min(values),values)] = math.inf
    return sorted_list

#Function to carry out NSGA-II's fast non dominated sort
def fast_non_dominated_sort(values1, values2):
    S=[[] for i in range(0,len(values1))]
    front = [[]]
    n=[0 for i in range(0,len(values1))]
    rank = [0 for i in range(0, len(values1))]

    for p in range(0,len(values1)):
        S[p]=[]
        n[p]=0
        for q in range(0, len(values1)):
            if (values1[p] > values1[q] and values2[p] > values2[q]) or\
                    (values1[p] >= values1[q] and values2[p] > values2[q]) or\
                    (values1[p] > values1[q] and values2[p] >= values2[q]):
                if q not in S[p]:
                    S[p].append(q)
            elif (values1[q] > values1[p] and values2[q] > values2[p]) or\
                    (values1[q] >= values1[p] and values2[q] > values2[p]) or\
                    (values1[q] > values1[p] and values2[q] >= values2[p]):
                n[p] = n[p] + 1
        if n[p]==0:
            rank[p] = 0
            if p not in front[0]:
                front[0].append(p)

    i = 0
    while(front[i] != []):
        Q=[]
        for p in front[i]:
            for q in S[p]:
                n[q] =n[q] - 1
                if( n[q]==0):
                    rank[q]=i+1
                    if q not in Q:
                        Q.append(q)
        i = i+1
        front.append(Q)

    del front[len(front)-1]
    return front

#Function to calculate crowding distance
def crowding_distance(values1, values2, front):
    distance = [0 for i in range(0,len(front))]
    sorted1 = sort_by_values(front, values1[:])
    sorted2 = sort_by_values(front, values2[:])
    distance[0] = 4444444444444444
    distance[len(front) - 1] = 4444444444444444
    for k in range(1,len(front)-1):
        distance[k] = distance[k]+ (values1[sorted1[k+1]] - values2[sorted1[k-1]])/(max(values1)-min(values1))
    for k in range(1,len(front)-1):
        distance[k] = distance[k]+ (values1[sorted2[k+1]] - values2[sorted2[k-1]])/(max(values2)-min(values2))
    return distance

#Function to carry out the crossover
def crossover(a,b):
    r=random.random()
    if r>0.5:
        return mutation((a+b)/2)
    else:
        return mutation((a-b)/2)

#Function to carry out the mutation operator
def mutation(solution):
    mutation_prob = random.random()
    if mutation_prob <1:
        solution = min_x+(max_x-min_x)*random.random()
    return solution

#Main program starts here
pop_size = 20
max_gen = 921

#Initialization
min_x=-55
max_x=55
# 随机生成初始种群
solution=[min_x+(max_x-min_x)*random.random() for i in range(0,pop_size)]
gen_no=0
while(gen_no<max_gen):
    # 自适应度计算
    function1_values = [function1(solution[i])for i in range(0,pop_size)]
    function2_values = [function2(solution[i])for i in range(0,pop_size)]
    # pareto等级
    non_dominated_sorted_solution = fast_non_dominated_sort(function1_values[:],function2_values[:])
    print("The best front for Generation number ",gen_no, " is")
    for valuez in non_dominated_sorted_solution[0]:
        print(round(solution[valuez],3),end=" ")
    print("\n")
    # 拥挤度距离计算
    crowding_distance_values = []
    for i in range(0,len(non_dominated_sorted_solution)):
        crowding_distance_values.append(crowding_distance(function1_values[:],function2_values[:],non_dominated_sorted_solution[i][:]))
    solution2 = solution[:] # P+Q
    #Generating offsprings
    while(len(solution2)!=2*pop_size):
        a1 = random.randint(0,pop_size-1)
        b1 = random.randint(0,pop_size-1)
        # 交叉变异
        solution2.append(crossover(solution[a1],solution[b1]))
    # 计算 P+Q种群的适应度
    function1_values2 = [function1(solution2[i])for i in range(0,2*pop_size)]
    function2_values2 = [function2(solution2[i])for i in range(0,2*pop_size)]
    # 非支配排序
    non_dominated_sorted_solution2 = fast_non_dominated_sort(function1_values2[:],function2_values2[:])
    # 拥挤度距离计算
    crowding_distance_values2=[]
    for i in range(0,len(non_dominated_sorted_solution2)):
        crowding_distance_values2.append(crowding_distance(function1_values2[:],function2_values2[:],non_dominated_sorted_solution2[i][:]))
    # 得到下一代种群P1
    new_solution = []   # index
    for i in range(0,len(non_dominated_sorted_solution2)):
        non_dominated_sorted_solution2_1 = [index_of(non_dominated_sorted_solution2[i][j],non_dominated_sorted_solution2[i]) for j in range(0,len(non_dominated_sorted_solution2[i]))]
        front22 = sort_by_values(non_dominated_sorted_solution2_1[:], crowding_distance_values2[i][:])
        front = [non_dominated_sorted_solution2[i][front22[j]] for j in range(0,len(non_dominated_sorted_solution2[i]))]
        front.reverse()
        for value in front:
            new_solution.append(value)
            if(len(new_solution)==pop_size):
                break
        if (len(new_solution) == pop_size):
            break
    solution = [solution2[i] for i in new_solution]
    gen_no = gen_no + 1

#Lets plot the final front now
function1 = [i * -1 for i in function1_values]
function2 = [j * -1 for j in function2_values]
plt.xlabel('Function 1', fontsize=15)
plt.ylabel('Function 2', fontsize=15)
plt.scatter(function1, function2)
plt.show()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177

在这里插入图片描述

这里是引用添加链接描述

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小小林熬夜学编程/article/detail/150506
推荐阅读
相关标签
  

闽ICP备14008679号