赞
踩
给你一个下标从 0 开始、严格递增 的整数数组 nums 和一个正整数 diff 。如果满足下述全部条件,则三元组 (i, j, k) 就是一个 算术三元组 :
i < j < k ,
nums[j] - nums[i] == diff 且
nums[k] - nums[j] == diff
返回不同 算术三元组 的数目。
示例 1:
输入:nums = [0,1,4,6,7,10], diff = 3
输出:2
解释:
(1, 2, 4) 是算术三元组:7 - 4 == 3 且 4 - 1 == 3 。
(2, 4, 5) 是算术三元组:10 - 7 == 3 且 7 - 4 == 3 。
示例 2:
输入:nums = [4,5,6,7,8,9], diff = 2
输出:2
解释:
(0, 2, 4) 是算术三元组:8 - 6 == 2 且 6 - 4 == 2 。
(1, 3, 5) 是算术三元组:9 - 7 == 2 且 7 - 5 == 2 。
提示:
3 <= nums.length <= 200
0 <= nums[i] <= 200
1 <= diff <= 50
nums 严格 递增
来源:力扣(LeetCode)
一个简单的思路:遍历nums的时候,只需要检查大于当前元素diff的元素和2倍于diff的元素是否都在nums里即可,如果都在的话则存在一组成立的三元组。
class Solution:
def index(self,a, x):
'Locate the leftmost value exactly equal to x'
i = bisect.bisect_left(a, x)
if i != len(a) and a[i] == x:
return i
return -1
def arithmeticTriplets(self, nums: List[int], diff: int) -> int:
count=0
for i in range(len(nums)):
if self.index(nums,nums[i]+diff*1)!=-1 and self.index(nums,nums[i]+diff*2)!=-1:
count+=1
return count
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。