赞
踩
自动驾驶,又称无人驾驶,是依靠计算机与人工智能技术在没有人为操纵的情况下,完成完整、安全、有效驾驶的一项前沿科技。
自动驾驶技术能够协调出行路线与规划时间,从而大程度提高出行效率,因此成为各国近年的一项研发重点。
自动驾驶分为五个等级
百度创始人、董事长兼CEO李彦宏在2022世界人工智能大会上指出,目前L2级自动驾驶技术已经可以实现大规模商业化,接下来将继续向L3、L4发力。
自动驾驶这项前沿技术的底层逻辑是什么呢?在自动驾驶技术栈中,主要分为感知、决策规划和控制三个模块。
感知模块就像是人的眼睛和耳朵,负责对外部环境进行感知,包含定位、建图、传感器融合等技术;控制模块就像人的手脚,负责将指令传达到电机、引擎,包含鲁棒控制、模型预测控制等技术;决策规划模块就像人的大脑,基于接收到的感知信息进行行为预测、决策,并生成指令传达给控制模块。
在决策规划中,有一类技术称为运动规划,那么什么是运动规划呢?
运动规划(Motion Planning)以最优性为核心,在环境中给定起点和终点的条件下,规划机器人无冲突行进的状态序列。运动规划框架如下所示,主要包含路径规划与轨迹规划两大组件。
那路径规划和轨迹规划有什么区别和联系呢?
路径规划(Path Planning)
以可达性为核心,基于路径约束(如障碍物),规划机器人首末位置间无冲突行进的最优路径序列。
轨迹规划(Trajectory Planning)以稳定性和快速性为核心,基于运动学、动力学约束和路径序列,规划运动状态 以逼近全局路径。
一般地,路径规划的输入是全局静态环境,也称为全局规划(Global Planning);轨迹规划的输入是全局路径、动态环境和模型约束,通常在局部范围内进行动态避障和路径跟踪,也称为局部规划(Local Planning)。
本专栏将重点介绍路径规划和轨迹规划技术,并且采用工程上常用的ROS C++以及仿真中常用的Python/Matlab三种语言对常见的规划算法进行实现,帮助读者理解原理。同时,辅以部分控制原理、传感技术、常见机器人运动学与动力学建模,弥补一些运动规划的底层知识,具体大纲如下
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。