赞
踩
# -*- coding: utf-8 -*-
import cv2
import numpy as np
import matplotlib.pyplot as plt
# 分别提取图像的红、绿、蓝三个位面并显示
def Q1(img):
# cv2读进来是bgr
# 调用通道分离的包实现
b,g,r = cv2.split(img)
h, w = r.shape
# 不调用通道分离的包实现
b_1 = img.copy()
g_1 = img.copy()
r_1 = img.copy()
for i in range(h):
for j in range(w):
# 想要用rgb输出
r_1[i][j] = (img[i][j][2],0,0)
g_1[i][j] = (0,img[i][j][1],0)
b_1[i][j] = (0,0,img[i][j][0])
# 显示为一张图片
# 显示中文
plt.rcParams['font.sans-serif'] = ['SimHei']
# 显示原图
plt.subplot(3, 3, 1)
plt.title('原图')
plt.imshow(img[:,:,::-1])
plt.xticks([]), plt.yticks([])
# 直接按通道输出
plt.subplot(3, 3, 4)
plt.title('红色_调包')
plt.imshow(r)
plt.xticks([]), plt.yticks([])
plt.subplot(3, 3, 5)
plt.title('绿色_调包')
plt.imshow(g)
plt.xticks([]), plt.yticks([])
plt.subplot(3, 3, 6)
plt.title('蓝色_调包')
plt.imshow(b)
plt.xticks([]), plt.yticks([])
# 不调用
plt.subplot(3, 3, 7)
plt.title('红色_循环实现')
plt.imshow(r_1[:,:,:])
plt.xticks([]), plt.yticks([])
plt.subplot(3, 3, 8)
plt.title('绿色_循环实现')
plt.imshow(g_1[:,:,:])
plt.xticks([]), plt.yticks([])
plt.subplot(3, 3, 9)
plt.title('蓝色_循环实现')
plt.imshow(b_1[:,:,:])
plt.xticks([]), plt.yticks([])
# 展示
plt.show()
# 将彩色图像从RGB空间转换到HSI空间,在同一个图像窗口显示两个彩色空间的图像
def Q2(img):
# 复制一下图片
img_new = img.copy()
# 得到长、宽
h = np.shape(img)[0]
w = np.shape(img)[1]
# 1/255 = 0.0039 所以为了防止除以0,给每个点增加了0.001
B, G, R = cv2.split(img)
[B, G, R] = [i/255.0+0.001 for i in ([B, G, R])]
# 公式:https://ask.qcloudimg.com/http-save/7151457/rn6syd7oad.png?imageView2/2/w/1620
# I可以直接求
I = (R + G + B) / 3.0 # 计算I通道
# H
H = np.zeros((h, w)) # 定义H通道
for i in range(h):
den = np.sqrt((R[i] - G[i]) ** 2 + (R[i] - B[i]) * (G[i] - B[i]))+0.001
# 同理,den把上述的0.001消除了,所以这里重新增加一个不影响的值
thetha = np.arccos(0.5 * (R[i] - B[i] + R[i] - G[i]) / den) # 计算夹角
temp = np.zeros(w) # 定义临时数组
# den>0且G>=B的元素h赋值为thetha
temp[B[i] <= G[i]] = thetha[B[i] <= G[i]]
# den>0且G<=B的元素h赋值为thetha
temp[G[i] < B[i]] = 2 * np.pi - thetha[G[i] < B[i]]
# den<0的元素h赋值为0
temp[den == 0] = 0
H[i] = temp / (2 * np.pi) # 弧度化后赋值给H通道
# S
S = np.zeros((h, w)) # 定义H通道
for i in range(h):
min = []
# 找出每组RGB值的最小值
for j in range(w):
arr = [B[i][j], G[i][j], R[i][j]]
min.append(np.min(arr))
# 计算S通道
min = np.array(min)
S[i] = 1 - (min * 3 / (R[i] + B[i] + G[i]))
# I为0的值直接赋值0
S[i][R[i] + B[i] + G[i] == 0] = 0
# 扩充到255以方便显示,一般H分量在[0,2pi]之间,S和I在[0,1]之间
img_new[:, :, 0] = H * 255
img_new[:, :, 1] = S * 255
img_new[:, :, 2] = I * 255
# 显示中文
plt.rcParams['font.sans-serif'] = ['SimHei']
# 显示原图
plt.subplot(1, 2, 1)
plt.title('原图')
plt.imshow(img[:,:,::-1])
plt.subplot(1, 2, 2)
plt.title('HSI图像')
plt.imshow(img_new[:,:,:])
# 展示
plt.show()
# 将彩色图像转换成灰度图像,并进行直方图规定化操作,显示规定化操作前后的图像;
# 累积直方图的制作
def leiji(img):
# 初始化
x = [0] * 256
y = [0] * 256
prob = [0] * 256
for i in range(256):
x[i] = i
y[i] = 0
for rv in img:
# 算出现次数
for cv in rv:
y[cv] += 1
# 长和宽
h, w = img.shape
for i in range(256):
# 算出现概率
prob[i] = y[i] / (h * w)
# 累积直方图准备工作
prob_sum = [0] * 256
# 第0个值
prob_sum[0] = prob[0]
for i in range(1, 256):
prob_sum[i] = prob_sum[i - 1] + prob[i]
return prob_sum
def Q3(img1,img2):
# 将彩色图像转化为灰度图像
gray_img1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY) # 待转换图像
gray_img2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY) # 目标转换成这样的图像
# 颜色累计直方图
x = range(256)
img1_leiji = leiji(gray_img1)
img2_leiji = leiji(gray_img2)
# 构造一个256*256的空表
abs_chazhi = [[0 for i in range(256)] for j in range(256)]
for i in range(256):
for j in range(256):
abs_chazhi[i][j] = abs(img1_leiji[i] - img2_leiji[j])
# 构造灰度级映射
img_map = [0] * 256
for i in range(256):
zuixiao_n = abs_chazhi[i][0]
index = 0
for j in range(256):
if zuixiao_n > abs_chazhi[i][j]:
zuixiao_n = abs_chazhi[i][j]
index = j
img_map[i] = ([i, index])
# 进行映射,实现灰度规定化
h, w = gray_img1.shape
img_new = gray_img1.copy()
for i in range(h):
for j in range(w):
img_new[i, j] = img_map[gray_img1[i, j]][1]
# 显示中文
plt.rcParams['font.sans-serif'] = ['SimHei']
# 显示原图
plt.subplot(4, 2, 1)
plt.title('原图1')
plt.imshow(img1[:,:,::-1])
plt.subplot(4, 2, 2)
plt.title('原图2')
plt.imshow(img2[:,:,::-1])
plt.subplot(4, 2, 3)
plt.title('灰度图1')
plt.imshow(gray_img1,'gray')
plt.subplot(4, 2, 4)
plt.title('灰度图2')
plt.imshow(gray_img2,'gray')
plt.subplot(4, 2, 5)
plt.title('累积直方图1')
plt.bar(x, img1_leiji, color='orange')
plt.subplot(4, 2, 6)
plt.title('累积直方图2')
plt.bar(x, img2_leiji, color='green')
plt.subplot(4, 2, 7)
plt.title('灰度图1')
plt.imshow(gray_img1,'gray')
plt.subplot(4, 2, 8)
plt.title('规定化后')
plt.imshow(img_new,'gray')
# 展示
plt.show()
# 给图像外层加一圈 这里采用+最外层一圈而不是补0
def jiayiquan(h,w,img):
a = []
for i in range(h + 2):
a.append([0] * (w + 2))
for i in range(h):
for j in range(w):
a[i + 1][j + 1] = img[i][j]
# 完成在原图img1 周围补一圈 变成a
# 四个角
a[0][0] = a[1][1] # 左上角
a[0][w + 1] = a[1][w] # 右上角
a[h + 1][0] = a[h][1] # 左下角
a[h + 1][w + 1] = a[h][w] # 右下角
# 左右
for i in range(1, h + 1):
a[i][0] = a[i][1]
a[i][w + 1] = a[i][w]
# 上下
for j in range(1, w + 1):
a[0][j] = a[1][j]
a[h + 1][j] = a[h][j]
return a
def huifu(h,w,img):
a = np.zeros((h,w))
for i in range(h-2):
for j in range(w-2):
a[i][j]=img[i+1][j+1]
return a
def juanji(is_ditong,h,w,img_a,mod):
b = np.zeros((h+2,w+2))
if is_ditong:
ditong_sum = sum(mod)
else:
ditong_sum = 1
for i in range(1,h+1):
for j in range(1,w+1):
c = int((mod[0] * img_a[i-1][j-1] + mod[1] * img_a[i-1][j] + mod[2] * img_a[i-1][j+1] +
mod[3] * img_a[i][j - 1] + mod[4] * img_a[i][j] + mod[5] * img_a[i][j+1] +
mod[6] * img_a[i+1][j-1] + mod[7] * img_a[i+1][j] + mod[8] * img_a[i+1][j+1])/ditong_sum-0.5)
if c < 0:
b[i][j] = 0
elif c > 255:
b[i][j] = 255
else:
b[i][j] = c
# 恢复为图片原大小
b = huifu(h,w,b)
return b
# 分别设计低通、高通滤波模板,并对图像进行滤波操作,显示原图、平滑图像和锐化图像;
def Q4(img):
# 转化为灰度图
img1 = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
h, w = img1.shape
# 创建模板
# model_d是低通滤波模板
# 均值卷积核
model_d_1 = [1, 1, 1,
1, 1, 1,
1, 1, 1] # 还要除以1/9
# 高斯卷积核
model_d_2 = [1, 2, 1,
2, 4, 2,
1, 2, 1] # 还需要除1/16
# model_g是低通滤波模板
# 中间加1来给
model_g_1 = [-1, -1, -1,
-1, 9, -1,
-1, -1, -1] # 锐化卷积核1,中间+1在原图的基础上叠加了卷积核2
model_g_2 = [-1, -1, -1,
-1, 8, -1,
-1, -1, -1] # 锐化卷积核2
# 给图片周围增加一圈,使得 高[0,h+1](h+2) 宽[0,w+1](w+1)
a = jiayiquan(h,w,img1)
# 卷积操作
# 均值卷积核 111 111 111
d1 = juanji(True,h,w,a,model_d_1)
# 高斯卷积核 121 242 121
d2 = juanji(True,h,w,a,model_d_2)
# 锐化卷积1 -1-1-1 -1 9-1 -1-1-1
g1 = juanji(False,h,w,a,model_g_1)
# 锐化卷积2 -1-1-1 -1 8-1 -1-1-1
g2 = juanji(False,h,w,a,model_g_2)
# 显示中文
plt.rcParams['font.sans-serif'] = ['SimHei']
# 显示原图
plt.subplot(3, 2, 1)
plt.title('原图')
plt.imshow(img[:,:,::-1])
plt.subplot(3, 2, 2)
plt.title('灰度图')
plt.imshow(img1,'gray')
plt.subplot(3, 2, 3)
plt.title('111 111 111滤波')
plt.imshow(d1,'gray')
plt.subplot(3, 2, 4)
plt.title('121 242 121滤波')
plt.imshow(d2, 'gray')
plt.subplot(3, 2, 5)
plt.title('-1绕9滤波')
plt.imshow(g1, 'gray')
plt.subplot(3, 2, 6)
plt.title('-1绕8滤波')
plt.imshow(g2, 'gray')
# 展示
plt.show()
# 设计高斯高通滤波器,对图像在频域进行高通滤波,显示原始图像、频谱图及滤波后图像和频谱图;
def Q5(img):
img1 = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
h,w = img1.shape
# 快速傅里叶变换算法得到频率分布
f = np.fft.fft2(img1)
# 频谱图1
fimg1 = np.log(np.abs(f))
# 调用fftshift()函数转移到中间位置
fshift = np.fft.fftshift(f)
# 频谱图2
fimg2 = np.log(np.abs(fshift))
# 高通滤波 ---> 低频部分置0
# 获得中心点
half_h = int(h / 2)
half_w = int(w / 2)
# 中心点附近置零
fshift1 = fshift.copy()
fshift1[half_h - 30: half_h + 30, half_w - 30: half_w + 30] = 0
# 高通滤波频谱图
fimg_g = np.abs(fshift1)
fimg_g = np.log(fimg_g)
# 傅里叶逆变换
ishift = np.fft.ifftshift(fshift1)
img_new1 = np.fft.ifft2(ishift)
img_new1 = np.abs(img_new1)
# 低通滤波---> 高频部分 置0
fshift2 = fshift.copy()
for i in range(h):
for j in range(w):
if (i<half_h-30 or i >half_h+30) or (j<half_w-30 or j>half_w+30):
fshift2[i][j]=0
# 低通滤波频谱图
fimg_d = np.abs(fshift2)
fimg_d = np.log(fimg_d)
# 傅里叶逆变换
ishift = np.fft.ifftshift(fshift2)
img_new2 = np.fft.ifft2(ishift)
img_new2 = np.abs(img_new2)
# 显示中文
plt.rcParams['font.sans-serif'] = ['SimHei']
# 显示原图
plt.subplot(2, 4, 1)
plt.title('原图')
plt.imshow(img[:,:,::-1])
plt.subplot(2, 4, 2)
plt.title('灰度图')
plt.imshow(img1,'gray')
plt.subplot(2, 4, 3)
plt.title('频谱图_1')
plt.imshow(fimg1,'gray')
plt.subplot(2, 4, 4)
plt.title('频谱图_2')
plt.imshow(fimg2,'gray')
plt.subplot(2, 4, 5)
plt.title('高通-频谱图')
plt.imshow(fimg_g,'gray')
plt.subplot(2, 4, 6)
plt.title('高通-处理后')
plt.imshow(img_new1,'gray')
plt.subplot(2, 4, 7)
plt.title('低通-频谱图')
plt.imshow(fimg_d,'gray')
plt.subplot(2, 4, 8)
plt.title('低通-处理后')
plt.imshow(img_new2,'gray')
# 展示
plt.show()
# 对图像采用canny算子进行边缘检测,并对检测后的图像进行开和闭数学形态学运算,显示边缘图像及开闭运算图像。
def Q6(img):
img1 = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 高斯滤波
gaussian = cv2.GaussianBlur(img1,(3,3),0)
# Canny算子
Canny = cv2.Canny(gaussian, 50, 150)
# 使用闭运算连接中断的图像前景,迭代运算三次
# 调包实现
kai = cv2.morphologyEx(Canny, cv2.MORPH_CLOSE, kernel=(3, 3), iterations=3)
bi = cv2.morphologyEx(Canny, cv2.MORPH_OPEN, kernel=(3, 3), iterations=3)
# 显示中文
plt.rcParams['font.sans-serif'] = ['SimHei']
# 显示原图
plt.subplot(2, 3, 1)
plt.title('原图')
plt.imshow(img[:,:,::-1])
plt.subplot(2, 3, 2)
plt.title('灰度图')
plt.imshow(img1,'gray')
plt.subplot(2, 3, 4)
plt.title('Canny边缘')
plt.imshow(Canny,'gray')
plt.subplot(2, 3, 5)
plt.title('开运算')
plt.imshow(kai,'gray')
plt.subplot(2, 3, 6)
plt.title('闭运算')
plt.imshow(bi,'gray')
# 展示
plt.show()
img = cv2.imread('b.jpg',1)
Q1(img) # finished
Q2(img) # finished
img1 = cv2.imread('img1.png',1)
img2 = cv2.imread('img2.png',1)
Q3(img1,img2) # finished
Q4(img) # finished
Q5(img) # finished
img3 = cv2.imread('jiaoyan2.png',1)
Q6(img3) # finished
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。