赞
踩
ModuleNotFoundError: No module named 'sklearn.cross_validation’
这个错是导入
from sklearn.cross_validation import train_test_split
报的错。主要是因为这个模块有更改,将这一句改为下面即可:
from sklearn.model_selection import train_test_split
ModuleNotFoundError: No module named 'sklearn.grid_search’
这个是由于导入
from sklearn.grid_search import GridSearchCV
报的错,需要将此句改为:
from sklearn.model_selection import GridSearchCV
ImportError: cannot import name 'RandomizedPCA’
需要将此句改为下面这句即可:
from sklearn.decomposition import PCA as RandomizedPCA
ValueError: min_faces_per_person=70 is too restrictive
这个是因为有数据没有下载完整而报的错误,下载到的目录(我的是window系统,在)下载好复制到这个目录就行,必须先将lfw_home目录下所有内容删除,再运行即可。
C:\Users\自己的用户名字\scikit_learn_data\lfw_home
可以手动下载下面这几个,将不完整的删除。
https://ndownloader.figshare.com/files/5976018 #lfw.tgz
https://ndownloader.figshare.com/files/5976015 #lfw-funneled.tgz
https://ndownloader.figshare.com/files/5976012 #pairsDevTrain.txt
https://ndownloader.figshare.com/files/5976009 #pairsDevTest.txt
https://ndownloader.figshare.com/files/5976006 #pairs.txt
ValueError: class_weight must be dict, ‘balanced’, or None, got: 'auto’
定位到是这一句:
clf = GridSearchCV(SVC(kernel='rbf', class_weight='auto'), param_grid)
意思是需要的需要是个字典,字典必须是 ‘balanced’, or None,却得到了‘auto’,所以需要改为:
clf = GridSearchCV(SVC(kernel='rbf', class_weight='balanced'), param_grid)
或者
clf = GridSearchCV(SVC(kernel='rbf', class_weight=None), param_grid)
到此结束了。
FutureWarning: You should specify a value for ‘cv’ instead of relying on the default value. The default value will change from 3 to 5 in version 0.22.
warnings.warn(CV_WARNING, FutureWarning)
能够运行,但是却有这个警告,The default value will change from 3 to 5 in version 0.22.这个意思默认cv改为3至5,经过测试,cv为3,4,5都可以。
clf = GridSearchCV(SVC(kernel='rbf', class_weight='balanced'), param_grid)
这一句,加个参数即可,
clf = GridSearchCV(SVC(kernel='rbf', class_weight='balanced'), param_grid,cv=4)
下面是默认的cv=‘warn’.
from __future__ import print_function from time import time import logging import matplotlib.pyplot as plt # from sklearn.cross_validation import train_test_split from sklearn.model_selection import train_test_split from sklearn.datasets import fetch_lfw_people # from sklearn.grid_search import GridSearchCV from sklearn.model_selection import GridSearchCV from sklearn.metrics import classification_report from sklearn.metrics import confusion_matrix # from sklearn.decomposition import RandomizedPCA from sklearn.decomposition import PCA as RandomizedPCA from sklearn.svm import SVC print(__doc__) # Display progress logs on stdout logging.basicConfig(level=logging.INFO, format='%(asctime)s %(message)s') ############################################################################### # Download the data, if not already on disk and load it as numpy arrays lfw_people = fetch_lfw_people(min_faces_per_person=70, resize=0.4) # introspect the images arrays to find the shapes (for plotting) n_samples, h, w = lfw_people.images.shape # for machine learning we use the 2 data directly (as relative pixel # positions info is ignored by this model) X = lfw_people.data n_features = X.shape[1] # the label to predict is the id of the person y = lfw_people.target target_names = lfw_people.target_names n_classes = target_names.shape[0] print("Total dataset size:") print("n_samples: %d" % n_samples) print("n_features: %d" % n_features) print("n_classes: %d" % n_classes) ############################################################################### # Split into a training set and a test set using a stratified k fold # split into a training and testing set X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.25) ############################################################################### # Compute a PCA (eigenfaces) on the face dataset (treated as unlabeled # dataset): unsupervised feature extraction / dimensionality reduction n_components = 150 print("Extracting the top %d eigenfaces from %d faces" % (n_components, X_train.shape[0])) t0 = time() pca = RandomizedPCA(n_components=n_components, whiten=True).fit(X_train) print("done in %0.3fs" % (time() - t0)) eigenfaces = pca.components_.reshape((n_components, h, w)) print("Projecting the input data on the eigenfaces orthonormal basis") t0 = time() X_train_pca = pca.transform(X_train) X_test_pca = pca.transform(X_test) print("done in %0.3fs" % (time() - t0)) ############################################################################### # Train a SVM classification model print("Fitting the classifier to the training set") t0 = time() param_grid = {'C': [1e3, 5e3, 1e4, 5e4, 1e5], 'gamma': [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.1], } # clf = GridSearchCV(SVC(kernel='rbf', class_weight='auto'), param_grid) clf = GridSearchCV(SVC(kernel='rbf', class_weight='balanced'), param_grid) clf = GridSearchCV(SVC(kernel='rbf', class_weight=None), param_grid) clf = clf.fit(X_train_pca, y_train) print("done in %0.3fs" % (time() - t0)) print("Best estimator found by grid search:") print(clf.best_estimator_) ############################################################################### # Quantitative evaluation of the model quality on the test set print("Predicting people's names on the test set") t0 = time() y_pred = clf.predict(X_test_pca) print("done in %0.3fs" % (time() - t0)) print(classification_report(y_test, y_pred, target_names=target_names)) print(confusion_matrix(y_test, y_pred, labels=range(n_classes))) ############################################################################### # Qualitative evaluation of the predictions using matplotlib def plot_gallery(images, titles, h, w, n_row=3, n_col=4): """Helper function to plot a gallery of portraits""" plt.figure(figsize=(1.8 * n_col, 2.4 * n_row)) plt.subplots_adjust(bottom=0, left=.01, right=.99, top=.90, hspace=.35) for i in range(n_row * n_col): plt.subplot(n_row, n_col, i + 1) plt.imshow(images[i].reshape((h, w)), cmap=plt.cm.gray) plt.title(titles[i], size=12) plt.xticks(()) plt.yticks(()) # plot the result of the prediction on a portion of the test set def title(y_pred, y_test, target_names, i): pred_name = target_names[y_pred[i]].rsplit(' ', 1)[-1] true_name = target_names[y_test[i]].rsplit(' ', 1)[-1] return r'predicted: %s\ntrue: %s' % (pred_name, true_name) prediction_titles = [title(y_pred, y_test, target_names, i) for i in range(y_pred.shape[0])] plot_gallery(X_test, prediction_titles, h, w) # plot the gallery of the most significative eigenfaces eigenface_titles = ["eigenface %d" % i for i in range(eigenfaces.shape[0])] plot_gallery(eigenfaces, eigenface_titles, h, w) plt.show()
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。