当前位置:   article > 正文

高斯的绝妙定理:现代微分几何的诞生

高斯的绝妙定理:现代微分几何的诞生

8b980c17fd79a4768e7dd8f9b34c576e.png

1827 年,高斯宣布了 Theorema Egregium(拉丁语,意为“绝妙定理”).虽然这一年见证了贝多芬的去世,但是这个定理的出现意味着这一年也见证了现代微分几何的诞生.

作者 | 特里斯坦·尼达姆[美](Tristan Needham)

来源 | 《可视化微分几何和形式:一部五幕数学正剧》

译者:刘伟安

这个结果在数学和物理学两方面都引发了一些根本性的进展,我们已经谈到了其中的一部分,另一部分则必须等到以后的章节再讨论.1868 年,贝尔特拉米利用这个结果解释了双曲几何就是具有常负高斯曲率的鞍形曲面的内蕴几何,这个解释是关键的一步,为双曲几何被普遍接受铺平了道路.黎曼将高斯的内蕴曲率推广到高维流形.1915 年,爱因斯坦利用黎曼的这个杰作给出了准确表达广义相对论的数学形式.这个表达极其精准、极其优美,其中,引力被理解为物质和能量压在时空中,形成时空内蕴几何里的曲率。

但是,为了正确地理解这个绝妙定理本身,我们将首先讨论它的起源.东布罗夫斯基(Dombrowski, 1979)在这方面做了精彩和深刻的工作,他通过查阅高斯的私人笔记本、给朋友的信和正式出版物,小心地拼凑了一个年表,反映了高斯对微分几何一般见解的发展,特别是对这个定理见解的发展.正如东布罗夫斯基所解释的那样,高斯史诗般的探索始于 1816 年,当时他对曲面的曲率有了一个非局部的发现,既意义深远,也出乎意料.

高斯的漂亮定理(1816 年)

高斯是一个不喜欢张扬的人.尽管他在赞扬别人方面很吝啬,但至少他不是个伪君子.直到他死后,他的一系列重大发现都隐藏在他的私人笔记本里,因为他认为这些结果还不够完善,尚不值得公开发表.事实上,他的拉丁文座右铭是 pauca,sed matura,意为“少,但成熟”.1816 年的这个非局部的结果就是这些未发表的发现之一.

令人头痛的是,即使在他的私人笔记本①里,高斯也没有留下任何线索来告诉人们,他是怎么猜到这个结果的,以及他是怎么证明的,但他激动得异乎寻常地说出了这个名字:

ff9d7d8672856a4f7e4ce7fba6d0a2d4.png

高斯在此所谓的“球面像”指的是曲面经球面映射到 S 2 上的像.图 13-1 用香蕉皮说明了这个定理的意义.我们强烈鼓励你自己试试这个(或类似的)实验.

首先,我们从香蕉正曲率的一侧削开一条口,将香蕉从皮里面取出来,保留完整的香蕉皮.在负曲率的一侧画一个逆时针走向的方框,并在这个方框上垂直于香蕉皮插上牙签表示竖起的法向量.

7f8becdb5965c605f279c03b5db61637.png

在球面映射下,这个方框被映射为9a06ed0e9dbc87aabf503b931437ebe6.png上围出面积为bb1b05f2a5762cdaba2bab1a61738804.png的窄四边形,其边界

走向与原像的相反,如图 13-1a 所示.一定要用你的眼睛跟着香蕉皮上方框的走向,确认法向量尖端的走向确实与7a43c707e91abe79b3080059098c9435.png上像的走向相反.

现在将香蕉的两端向内推,则香蕉皮经历了一个等距变换,我们先前画出的方框就会变形,生成在76818653aa4a2d589448087a78152c94.png上更接近正方形的像.根据漂亮定理,这个新的球面像的面积与变形前相同.

这样的实验让我们真实地看到定理 (13.1) 这个潜在的数学真理,着实令人兴奋,但它们说明不了什么.在第四幕,我们将引入平行移动的概念.借助平行移动,能够为漂亮定理提供一个概念性的解释.现在我们只能先承认它,以便推导出后续结果——绝妙定理.

高斯的绝妙定理(1827 年)

在发现漂亮定理之后的 10 年里,高斯确实从未就此发表过任何信息.但是,在私下里,他曾多次回顾微分几何和他的漂亮定理,特别是在 1822 年和 1825 年,他写下完整的手稿,然后又突然放弃.

最后,在 1827 年,他终于满意了,发表了以这个结果为核心内容的《关于曲面的一般研究》,压抑已久的兴奋得到释放.

之前,他曾私下称其为“漂亮定理”,现在,他向全世界宣布“绝妙定理”.但是,到了这个时候,高斯几乎完全掩盖了他在 1816 年发现非局部结果的痕迹,向世界展示的这个结果的形式纯粹是局部的.只需把漂亮定理中的图形简单地缩小到点 p,就能弄懂他如何得到了这个结果新的局部解释.

设曲面 S 上围绕在点 p 周围的一片面积为 δA,它在ada6e23c9d5ad4649ec707561c5d81e0.png上的像是围绕在点 n(p) 周围的一片球面,面积为1ac8b1555d5f6301a6a7651c759d1dcc.png.顺理成章地,δA 在 S 的等距变换下是不变的.根据漂亮定理 (13.1).39cf3e7ec5cb7aa6109fcd8d1431d978.png也是不变的.因此,立即得到以下绝妙定理:

468b1d83e9f19e8058a036c0e1d3fc27.png

实验.将香蕉的两端向里推,看看香蕉皮在点 p 处会发生什么变化:曲率半径 ρ1缩小了(因为这个主方向和香蕉的方向相同),横截痕的曲率半径 ρ2 变大了.按照定理 (13.2),乘积 ρ1ρ2 在香蕉皮弯曲的过程中始终保持为同一个常数.

0eea6302185b79c0a8c6845d57993634.png

要验证这个结论,取两段较硬(容易定型)的金属丝,在香蕉上选取一个特定的点,将金属丝弯曲到在特定点的两个主方向上自然地紧贴在香蕉(暂时不要将香蕉从香蕉皮里取出来)表面,得到这个点两个主曲率圆的一段弧.再将这两段弧平放在桌面上,量出它们的半径 ρ1 和 ρ2,得到乘积 ρ1ρ2.然后,请一位朋友将香蕉弯曲,并稳住.你如前面一样,在同一点上让金属丝再次自然地紧贴在香蕉新的弯曲表面上的两个新主方向①上.最后,在实验的误差范围内,验证新的乘积 ρ1ρ2 和前面一样.

这里的“弯曲”意为连续变形,但这不是定理的实际要求:确实存在一些等距变换,不能用平缓、连续的等距变形来实现.根据定理,这样的等距变换仍然保持曲率不变.

我们通过亚历山德罗夫著作(Aleksandrov, 1969, 第 101 页)中的一个例子来说明这一点.图 13-3 是亚历山德罗夫的手绘原图.图 13-3a 描绘了一个环形槽,想象它被放在一个平面上,与平面接触的是圆周 C.将环形槽沿圆周 C 剪成两部分,再将外半圈翻过来与内半圈粘到一起,得到图 13-3b.显然,新曲面与原曲面是等距的,但是直观上明显可知(而且可以证明),如果原曲面是刚性的,就不可能在没有拉伸的情况下弯曲成新曲面.注意,如果是一个直槽(半圆柱面),就可以在没有拉伸的连续变形下得到新曲面.

1b448773a28569b21bd07c6b52925149.png

当谈到弯曲时,“曲面”一词在物理学和数学中是不同的.一个物理的曲面,无论多么薄,实际上都不可能在没有拉伸的情况下弯曲.例如,取一张矩形的纸,把它卷起来,再将卷到一起的两条边用胶带粘起来,得到一个圆柱面.纸原来的边长是相等的,但是圆柱面的外周长要比内周长稍微长一点儿,所以外侧一定受到拉伸,在材料内就产生了张力.正是出于这个原因,当我们将胶带取下时,纸张会自己弹回原来的平面状态.只有在数学中,曲面是没有厚度的,可以在没有拉伸的情况下弯曲.

高斯的结果 (13.2) 已经是绝妙的了,但还有进一步的发展.绝妙定理说 Kext实际上是曲率的内蕴度量,自然要问:它与第 19 页式 (2.1) 高斯曲率 K 的最初内蕴定义有什么关系?当时是用单位面积的角盈来定义的,也就是 K  E(∆)/A(∆).

高斯的答案更加绝妙:

8a6bc6077f4e099661ee723cf18cab61.png

根据这个结果,我们能够忽略曲率这两种定义方式的差异,可以直接称其为曲面的曲率 K,以下就这样做了.

至于漂亮定理,这个精彩结果最简单、最一般的证明还要等到第四幕引入平行移动之后再介绍.然而,在下一章中,我们将能够通过一个涉及多面体的有限论证来使这个结果更具可信性.

下面,我们要来验证结论 (13.3) 对一些特殊曲面的有效性.对于这些曲面,我们已经通过计算知道了它们的外在主曲率和内蕴高斯曲率.

• 圆柱面和圆锥面.内蕴平坦的平面可以卷成圆柱面或圆锥面,因此这两类曲面的高斯曲率为零.结合这个事实和结论 (12.5),我们有

eff15ebcfa7be683785f70bcb345e775.png

• 球面.结合结论 (12.4) 和第 8 页式 (1.3),我们有

d9c63754cdea8c48184eaaf5446654f7.png

• 伪球面.结合结论 (10.9) 和第 60 页的结论 (5.3),我们有

25a9acbe90b227fc1d4cab9ff7b52727.png

• 环面.结合结论 (10.10) 和第 104 页习题 23,我们有

9dcb9acd8ccc9d76f17bef9dbd9a91a9.png

在历史上和数学中,这 5 种曲面都非常重要,所以我们将它们逐个单独叙述,但事实上,所有这 5 种曲面都服从结论 (13.3) 的事实可以一并表述如下.

• 一般旋转曲面.结合结论 (10.11)(10.12) 和第 103 页习题 22,其中质点以单位速率沿母线运动,我们有

5159152af16647bfba7a6d1911c74bfb.png

  推荐阅读

0983a4fae4d717b462743ea3dca1bfac.jpeg

《可视化微分几何和形式:一部五幕数学正剧》 

作者:[美]特里斯坦·尼达姆(Tristan Needham)

译者:刘伟安

1.旧金山大学数学系教授,理学院副院长,牛津大学博士,与霍金齐名的诺奖得主罗杰·彭罗斯弟子特里斯坦·尼达姆经典巨作!

2.200多幅手绘示意图,将“微分几何”回归为“几何”,运用牛顿的几何方法对经典结果做出了几何解释。

3.原著豆瓣高达9.9分!被认为是“小说一般流畅的数学教材!”

4.译者为国内著名偏微分方程专家,武汉大学原校长齐民友老师弟子、武汉大学数学教授刘伟安老师。

18e258a4f7f393abfd03d343a992f101.jpeg

《复分析:可视化方法》

作者:[美]特里斯坦·尼达姆

译者:齐民友

本书用一种真正不同寻常的、独具创造性的视角和可以看得见的论证方式解释初等复分析的理论,公开挑战当前占统治地位的纯符号逻辑推理。

本书是在复分析领域产生了广泛影响的一本著作。作者独辟蹊径,用丰富的图例展示各种概念、定理和证明思路,十分便于读者理解,充分揭示了复分析的数学美。

ca2e6f41f352d8036896e575d355c29f.jpeg

《微积分溯源:伟大思想的历程》

作者:戴维·M. 布雷苏

译者:陈见柯 林开亮 叶卢庆

从古希腊、古埃及、古印度、中国和欧洲等地的微积分思想,到牛顿、莱布尼茨、伯努利兄弟、黎曼等伟大数学家的辉煌成就,看一看微积分这座“数学宝藏”是如何被塑造成今天的模样的。

e429260bdad159bcd0fdc17feefdee74.png

《微积分的历程:从牛顿到勒贝格》

作者:邓纳姆

译者:李伯民 汪军 张怀勇

本书荣获“第七届文津图书奖推荐书目”。

这不是一本数学家的传记,而是一座展示微积分宏伟画卷的陈列室。书中的每一个结果,从牛顿的正弦函数的推导,到伽玛函数的表示,再到贝尔的分类定理,无一不处于各个时代的研究前沿,至今还闪烁着耀眼夺目的光芒。

12b4ab4a44dcaf59288d106a0cd78a3b.png

《普林斯顿微积分读本(修订版)》

《普林斯顿数学分析读本》

《普林斯顿概率论读本》

作者:[美] 史蒂文·J. 米勒、拉菲·格林贝格、史蒂文·J. 米勒

译者:李馨

风靡美国普林斯顿大学的数学课程读本,教你怎样在数学考试中获得高分,用大量例子和代码全面探讨数学问题提供课程视频和讲义。被誉为“普林斯顿读本”三剑客。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小小林熬夜学编程/article/detail/278767
推荐阅读
相关标签
  

闽ICP备14008679号