当前位置:   article > 正文

标定系列——基于OpenCV实现普通相机、鱼眼相机不同标定板下的标定(五)

标定系列——基于OpenCV实现普通相机、鱼眼相机不同标定板下的标定(五)

标定系列——基于OpenCV实现相机标定(五)

说明

该程序可以实现多种标定板的相机标定工作

代码解析

VID5.xml

<?xml version="1.0"?>

<!-- 相机拍摄的标定板图像路径名 -->
<opencv_storage>
<images>
images/CameraCalibration/VID5/xx1.jpg
images/CameraCalibration/VID5/xx2.jpg
images/CameraCalibration/VID5/xx3.jpg
images/CameraCalibration/VID5/xx4.jpg
images/CameraCalibration/VID5/xx5.jpg
images/CameraCalibration/VID5/xx6.jpg
images/CameraCalibration/VID5/xx7.jpg
images/CameraCalibration/VID5/xx8.jpg
</images>
</opencv_storage>
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15

in_VID5.xml

<?xml version="1.0"?>
<opencv_storage>
<Settings>
  <!-- 标定板尺寸. (可以是正方形、圆形) -->
  <BoardSize_Width>9</BoardSize_Width>
  <BoardSize_Height>6</BoardSize_Height>
  
  <!-- 用户定义的方格的尺寸 (像素,毫米)-->
  <Square_Size>50</Square_Size>
  <Marker_Size>25</Marker_Size>
  <!-- 相机标定所使用的标定板类型. 可以是CHESSBOARD CHARUCOBOARD CIRCLES_GRID ASYMMETRIC_CIRCLES_GRID -->
  <Calibrate_Pattern>"CHESSBOARD"</Calibrate_Pattern>
  <ArUco_Dict_Name>DICT_4X4_50</ArUco_Dict_Name>
  <ArUco_Dict_File_Name></ArUco_Dict_File_Name>
  <!--  用于标定的输入来源。
        使用输入摄像头 -> 提供摄像头的ID,例如 "1"
        使用输入视频  -> 提供输入视频的路径,例如 "/tmp/x.avi"
        使用图像列表  -> 提供含有图像列表的XML或YAML文件的路径,例如 "/tmp/circles_list.xml"
		-->
  <Input>"images/CameraCalibration/VID5/VID5.xml"</Input>
  <!--  如果为真(非零),则沿水平轴翻转输入图像 -->
  <Input_FlipAroundHorizontalAxis>0</Input_FlipAroundHorizontalAxis>
  
  <!-- 摄像头的帧之间的时间延迟 -->
  <Input_Delay>100</Input_Delay>	
  
  <!--  用于标定的帧数量 -->
  <Calibrate_NrOfFrameToUse>25</Calibrate_NrOfFrameToUse>
  <!-- 只考虑fy作为自由参数,比率fx/fy与输入cameraMatrix中的相同 -->
  <Calibrate_FixAspectRatio> 1 </Calibrate_FixAspectRatio>
  <!-- 如果为真(非零),切向畸变系数将被设置为零并保持为零 -->
  <Calibrate_AssumeZeroTangentialDistortion>1</Calibrate_AssumeZeroTangentialDistortion>
  <!-- 如果为真(非零),在全局优化过程中主点不会改变 -->
  <Calibrate_FixPrincipalPointAtTheCenter> 1 </Calibrate_FixPrincipalPointAtTheCenter>
  
  <!-- 输出日志文件名 -->
  <Write_outputFileName>"out_camera_data.xml"</Write_outputFileName>
  <!-- 如果为真(非零),将检测到的特征点写入输出文件 -->
  <Write_DetectedFeaturePoints>1</Write_DetectedFeaturePoints>
  <!-- 如果为真(非零),我们将外部相机参数写入输出文件 -->
  <Write_extrinsicParameters>1</Write_extrinsicParameters>
  <!--  如果为真(非零),我们将优化后的3D目标网格点写入输出文件 -->
  <Write_gridPoints>1</Write_gridPoints>
  <!-- 如果为真(非零),校准后我们显示无畸变的图像 -->
  <Show_UndistortedImage>1</Show_UndistortedImage>
  <!-- 如果为真(非零),将使用鱼眼相机模型进行标定 -->
  <Calibrate_UseFisheyeModel>0</Calibrate_UseFisheyeModel>
  <!-- 如果为真(非零),畸变系数k1将等于零 -->
  <Fix_K1>0</Fix_K1>
  <!-- 如果为真(非零),畸变系数k2将等于零  -->
  <Fix_K2>0</Fix_K2>
  <!-- 如果为真(非零),畸变系数k3将等于零 -->
  <Fix_K3>0</Fix_K3>
  <!-- 如果为真(非零),畸变系数k4将等于零 -->
  <Fix_K4>1</Fix_K4>
  <!-- 如果为真(非零),畸变系数k5将等于零 -->
  <Fix_K5>1</Fix_K5>
</Settings>
</opencv_storage>
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59

camera_calibration.cpp

核心代码就是camera_calibration.cpp,主要通过多张标定板图像进行相机的内参和畸变参数的计算,大体看了一下,里面的逻辑很清晰,就不做过多注解了

#include <iostream>
#include <sstream>
#include <string>
#include <ctime>
#include <cstdio>

#include <opencv2/core.hpp>
#include <opencv2/core/utility.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/calib3d.hpp>
#include <opencv2/imgcodecs.hpp>
#include <opencv2/videoio.hpp>
#include <opencv2/highgui.hpp>
#include "opencv2/objdetect/charuco_detector.hpp"

using namespace cv;
using namespace std;

class Settings
{
public:
    Settings() : goodInput(false) {}
    enum Pattern { NOT_EXISTING, CHESSBOARD, CHARUCOBOARD, CIRCLES_GRID, ASYMMETRIC_CIRCLES_GRID };
    enum InputType { INVALID, CAMERA, VIDEO_FILE, IMAGE_LIST };

    void write(FileStorage& fs) const                        //将数据写入文件
    {
        fs << "{"
                  << "BoardSize_Width"  << boardSize.width
                  << "BoardSize_Height" << boardSize.height
                  << "Square_Size"         << squareSize
                  << "Marker_Size"      << markerSize
                  << "Calibrate_Pattern" << patternToUse
                  << "ArUco_Dict_Name"   << arucoDictName
                  << "ArUco_Dict_File_Name" << arucoDictFileName
                  << "Calibrate_NrOfFrameToUse" << nrFrames
                  << "Calibrate_FixAspectRatio" << aspectRatio
                  << "Calibrate_AssumeZeroTangentialDistortion" << calibZeroTangentDist
                  << "Calibrate_FixPrincipalPointAtTheCenter" << calibFixPrincipalPoint

                  << "Write_DetectedFeaturePoints" << writePoints
                  << "Write_extrinsicParameters"   << writeExtrinsics
                  << "Write_gridPoints" << writeGrid
                  << "Write_outputFileName"  << outputFileName

                  << "Show_UndistortedImage" << showUndistorted

                  << "Input_FlipAroundHorizontalAxis" << flipVertical
                  << "Input_Delay" << delay
                  << "Input" << input
           << "}";
    }
    void read(const FileNode& node)                          //从文件中读
    {
        node["BoardSize_Width"] >> boardSize.width;
        node["BoardSize_Height"] >> boardSize.height;
        node["Calibrate_Pattern"] >> patternToUse;
        node["ArUco_Dict_Name"] >> arucoDictName;
        node["ArUco_Dict_File_Name"] >> arucoDictFileName;
        node["Square_Size"] >> squareSize;
        node["Marker_Size"] >> markerSize;
        node["Calibrate_NrOfFrameToUse"] >> nrFrames;
        node["Calibrate_FixAspectRatio"] >> aspectRatio;
        node["Write_DetectedFeaturePoints"] >> writePoints;
        node["Write_extrinsicParameters"] >> writeExtrinsics;
        node["Write_gridPoints"] >> writeGrid;
        node["Write_outputFileName"] >> outputFileName;
        node["Calibrate_AssumeZeroTangentialDistortion"] >> calibZeroTangentDist;
        node["Calibrate_FixPrincipalPointAtTheCenter"] >> calibFixPrincipalPoint;
        node["Calibrate_UseFisheyeModel"] >> useFisheye;
        node["Input_FlipAroundHorizontalAxis"] >> flipVertical;
        node["Show_UndistortedImage"] >> showUndistorted;
        node["Input"] >> input;
        node["Input_Delay"] >> delay;
        node["Fix_K1"] >> fixK1;
        node["Fix_K2"] >> fixK2;
        node["Fix_K3"] >> fixK3;
        node["Fix_K4"] >> fixK4;
        node["Fix_K5"] >> fixK5;

        validate();
    }
	
	// 输入值验证
    void validate()
    {
        goodInput = true;
        if (boardSize.width <= 0 || boardSize.height <= 0)
        {
            cerr << "Invalid Board size: " << boardSize.width << " " << boardSize.height << endl;
            goodInput = false;
        }
        if (squareSize <= 10e-6)
        {
            cerr << "Invalid square size " << squareSize << endl;
            goodInput = false;
        }
        if (nrFrames <= 0)
        {
            cerr << "Invalid number of frames " << nrFrames << endl;
            goodInput = false;
        }

        if (input.empty())      // Check for valid input
                inputType = INVALID;
        else
        {
            if (input[0] >= '0' && input[0] <= '9')
            {
                stringstream ss(input);
                ss >> cameraID;
                inputType = CAMERA;
            }
            else
            {
                if (isListOfImages(input) && readStringList(input, imageList))
                {
                    inputType = IMAGE_LIST;
                    nrFrames = (nrFrames < (int)imageList.size()) ? nrFrames : (int)imageList.size();
                }
                else
                    inputType = VIDEO_FILE;
            }
            if (inputType == CAMERA)
                inputCapture.open(cameraID);
            if (inputType == VIDEO_FILE)
                inputCapture.open(input);
            if (inputType != IMAGE_LIST && !inputCapture.isOpened())
                    inputType = INVALID;
        }
        if (inputType == INVALID)
        {
            cerr << " Input does not exist: " << input;
            goodInput = false;
        }

        flag = 0;
        if(calibFixPrincipalPoint) flag |= CALIB_FIX_PRINCIPAL_POINT;
        if(calibZeroTangentDist)   flag |= CALIB_ZERO_TANGENT_DIST;
        if(aspectRatio)            flag |= CALIB_FIX_ASPECT_RATIO;
        if(fixK1)                  flag |= CALIB_FIX_K1;
        if(fixK2)                  flag |= CALIB_FIX_K2;
        if(fixK3)                  flag |= CALIB_FIX_K3;
        if(fixK4)                  flag |= CALIB_FIX_K4;
        if(fixK5)                  flag |= CALIB_FIX_K5;

        if (useFisheye) {
            // the fisheye model has its own enum, so overwrite the flags
            flag = fisheye::CALIB_FIX_SKEW | fisheye::CALIB_RECOMPUTE_EXTRINSIC;
            if(fixK1)                   flag |= fisheye::CALIB_FIX_K1;
            if(fixK2)                   flag |= fisheye::CALIB_FIX_K2;
            if(fixK3)                   flag |= fisheye::CALIB_FIX_K3;
            if(fixK4)                   flag |= fisheye::CALIB_FIX_K4;
            if (calibFixPrincipalPoint) flag |= fisheye::CALIB_FIX_PRINCIPAL_POINT;
        }

        calibrationPattern = NOT_EXISTING;
        if (!patternToUse.compare("CHESSBOARD")) calibrationPattern = CHESSBOARD;
        if (!patternToUse.compare("CHARUCOBOARD")) calibrationPattern = CHARUCOBOARD;
        if (!patternToUse.compare("CIRCLES_GRID")) calibrationPattern = CIRCLES_GRID;
        if (!patternToUse.compare("ASYMMETRIC_CIRCLES_GRID")) calibrationPattern = ASYMMETRIC_CIRCLES_GRID;
        if (calibrationPattern == NOT_EXISTING)
        {
            cerr << " Camera calibration mode does not exist: " << patternToUse << endl;
            goodInput = false;
        }
        atImageList = 0;

    }
    
	// 获取图像
	Mat nextImage()
    {
        Mat result;
        if( inputCapture.isOpened() )
        {
            Mat view0;
            inputCapture >> view0;
            view0.copyTo(result);
        }
        else if( atImageList < imageList.size() )
            result = imread(imageList[atImageList++], IMREAD_COLOR);

        return result;
    }
	
	//读取图像名,保存在vector
    static bool readStringList( const string& filename, vector<string>& l )
    {
        l.clear();
        FileStorage fs(filename, FileStorage::READ);
        if( !fs.isOpened() )
            return false;
        FileNode n = fs.getFirstTopLevelNode();
        if( n.type() != FileNode::SEQ )
            return false;
        FileNodeIterator it = n.begin(), it_end = n.end();
        for( ; it != it_end; ++it )
            l.push_back((string)*it);
        return true;
    }

    static bool isListOfImages( const string& filename)
    {
        string s(filename);
        // Look for file extension
        if( s.find(".xml") == string::npos && s.find(".yaml") == string::npos && s.find(".yml") == string::npos )
            return false;
        else
            return true;
    }
	
public:
    Size boardSize;              // The size of the board -> Number of items by width and height
    Pattern calibrationPattern;  // One of the Chessboard, ChArUco board, circles, or asymmetric circle pattern
    float squareSize;            // The size of a square in your defined unit (point, millimeter,etc).
    float markerSize;            // The size of a marker in your defined unit (point, millimeter,etc).
    string arucoDictName;        // The Name of ArUco dictionary which you use in ChArUco pattern
    string arucoDictFileName;    // The Name of file which contains ArUco dictionary for ChArUco pattern
    int nrFrames;                // The number of frames to use from the input for calibration
    float aspectRatio;           // The aspect ratio
    int delay;                   // In case of a video input
    bool writePoints;            // Write detected feature points
    bool writeExtrinsics;        // Write extrinsic parameters
    bool writeGrid;              // Write refined 3D target grid points
    bool calibZeroTangentDist;   // Assume zero tangential distortion
    bool calibFixPrincipalPoint; // Fix the principal point at the center
    bool flipVertical;           // Flip the captured images around the horizontal axis
    string outputFileName;       // The name of the file where to write
    bool showUndistorted;        // Show undistorted images after calibration
    string input;                // The input ->
    bool useFisheye;             // use fisheye camera model for calibration
    bool fixK1;                  // fix K1 distortion coefficient
    bool fixK2;                  // fix K2 distortion coefficient
    bool fixK3;                  // fix K3 distortion coefficient
    bool fixK4;                  // fix K4 distortion coefficient
    bool fixK5;                  // fix K5 distortion coefficient

    int cameraID;
    vector<string> imageList;
    size_t atImageList;
    VideoCapture inputCapture;
    InputType inputType;
    bool goodInput;
    int flag;

private:
    string patternToUse;


};

static inline void read(const FileNode& node, Settings& x, const Settings& default_value = Settings())
{
    if(node.empty())
        x = default_value;
    else
        x.read(node);
}

enum { DETECTION = 0, CAPTURING = 1, CALIBRATED = 2 };

bool runCalibrationAndSave(Settings& s, Size imageSize, Mat&  cameraMatrix, Mat& distCoeffs,
                           vector<vector<Point2f> > imagePoints, float grid_width, bool release_object);

int main(int argc, char* argv[])
{
    const String keys
        = "{help h usage ? |           | print this message            }"
          "{@settings      |default.xml| input setting file            }"
          "{d              |           | actual distance between top-left and top-right corners of "
          "the calibration grid }"
          "{winSize        | 11        | Half of search window for cornerSubPix }";
    CommandLineParser parser(argc, argv, keys);
    parser.about("This is a camera calibration sample.\n"
                 "Usage: camera_calibration [configuration_file -- default ./default.xml]\n"
                 "Near the sample file you'll find the configuration file, which has detailed help of "
                 "how to edit it. It may be any OpenCV supported file format XML/YAML.");
    if (!parser.check()) {
        parser.printErrors();
        return 0;
    }

    if (parser.has("help")) {
        parser.printMessage();
        return 0;
    }

    //! [file_read]
    Settings s;
    const string inputSettingsFile = parser.get<string>(0);
    FileStorage fs(inputSettingsFile, FileStorage::READ); // Read the settings
    if (!fs.isOpened())
    {
        cout << "Could not open the configuration file: \"" << inputSettingsFile << "\"" << endl;
        parser.printMessage();
        return -1;
    }
    fs["Settings"] >> s;
    fs.release();                                         // close Settings file
    //! [file_read]

    if (!s.goodInput)
    {
        cout << "Invalid input detected. Application stopping. " << endl;
        return -1;
    }

    int winSize = parser.get<int>("winSize"); // 获取角点搜索窗口大小的一半

    float grid_width = s.squareSize * (s.boardSize.width - 1);
    if (s.calibrationPattern == Settings::Pattern::CHARUCOBOARD) {
        grid_width = s.squareSize * (s.boardSize.width - 2);
    }

    bool release_object = false;
    if (parser.has("d")) {
        grid_width = parser.get<float>("d");
        release_object = true;
    }

    // 创建CharucoBoard棋盘对象
    cv::aruco::Dictionary dictionary;
	// 如果标定模式为CHARUCOBOARD,创建相应的字典
    if (s.calibrationPattern == Settings::CHARUCOBOARD) {
        if (s.arucoDictFileName == "") {
            cv::aruco::PredefinedDictionaryType arucoDict;
            if (s.arucoDictName == "DICT_4X4_50") { arucoDict = cv::aruco::DICT_4X4_50; }
            else if (s.arucoDictName == "DICT_4X4_100") { arucoDict = cv::aruco::DICT_4X4_100; }
            else if (s.arucoDictName == "DICT_4X4_250") { arucoDict = cv::aruco::DICT_4X4_250; }
            else if (s.arucoDictName == "DICT_4X4_1000") { arucoDict = cv::aruco::DICT_4X4_1000; }
            else if (s.arucoDictName == "DICT_5X5_50") { arucoDict = cv::aruco::DICT_5X5_50; }
            else if (s.arucoDictName == "DICT_5X5_100") { arucoDict = cv::aruco::DICT_5X5_100; }
            else if (s.arucoDictName == "DICT_5X5_250") { arucoDict = cv::aruco::DICT_5X5_250; }
            else if (s.arucoDictName == "DICT_5X5_1000") { arucoDict = cv::aruco::DICT_5X5_1000; }
            else if (s.arucoDictName == "DICT_6X6_50") { arucoDict = cv::aruco::DICT_6X6_50; }
            else if (s.arucoDictName == "DICT_6X6_100") { arucoDict = cv::aruco::DICT_6X6_100; }
            else if (s.arucoDictName == "DICT_6X6_250") { arucoDict = cv::aruco::DICT_6X6_250; }
            else if (s.arucoDictName == "DICT_6X6_1000") { arucoDict = cv::aruco::DICT_6X6_1000; }
            else if (s.arucoDictName == "DICT_7X7_50") { arucoDict = cv::aruco::DICT_7X7_50; }
            else if (s.arucoDictName == "DICT_7X7_100") { arucoDict = cv::aruco::DICT_7X7_100; }
            else if (s.arucoDictName == "DICT_7X7_250") { arucoDict = cv::aruco::DICT_7X7_250; }
            else if (s.arucoDictName == "DICT_7X7_1000") { arucoDict = cv::aruco::DICT_7X7_1000; }
            else if (s.arucoDictName == "DICT_ARUCO_ORIGINAL") { arucoDict = cv::aruco::DICT_ARUCO_ORIGINAL; }
            else if (s.arucoDictName == "DICT_APRILTAG_16h5") { arucoDict = cv::aruco::DICT_APRILTAG_16h5; }
            else if (s.arucoDictName == "DICT_APRILTAG_25h9") { arucoDict = cv::aruco::DICT_APRILTAG_25h9; }
            else if (s.arucoDictName == "DICT_APRILTAG_36h10") { arucoDict = cv::aruco::DICT_APRILTAG_36h10; }
            else if (s.arucoDictName == "DICT_APRILTAG_36h11") { arucoDict = cv::aruco::DICT_APRILTAG_36h11; }
            else {
                cout << "incorrect name of aruco dictionary \n";
                return 1;
            }

            dictionary = cv::aruco::getPredefinedDictionary(arucoDict);
        }
        else {
            cv::FileStorage dict_file(s.arucoDictFileName, cv::FileStorage::Mode::READ);
            cv::FileNode fn(dict_file.root());
            dictionary.readDictionary(fn);
        }
    }
    else {
        // default dictionary
        dictionary = cv::aruco::getPredefinedDictionary(0);
    }
	
	// 创建CharucoBoard对象和检测器
    cv::aruco::CharucoBoard ch_board({s.boardSize.width, s.boardSize.height}, s.squareSize, s.markerSize, dictionary);
    cv::aruco::CharucoDetector ch_detector(ch_board);
    std::vector<int> markerIds;

    vector<vector<Point2f> > imagePoints;
    Mat cameraMatrix, distCoeffs;
    Size imageSize;
    int mode = s.inputType == Settings::IMAGE_LIST ? CAPTURING : DETECTION;
    clock_t prevTimestamp = 0;
    const Scalar RED(0,0,255), GREEN(0,255,0);
    const char ESC_KEY = 27;
    //! [get_input]


    // 循环处理图像
    for(;;)
    {
        Mat view;
        bool blinkOutput = false;

        view = s.nextImage();

        //-----  If no more image, or got enough, then stop calibration and show result -------------
        if( mode == CAPTURING && imagePoints.size() >= (size_t)s.nrFrames )
        {
		  // 调用标定函数,成功则切换到CALIBRATED模式,否则回到DETECTION模式
          if(runCalibrationAndSave(s, imageSize,  cameraMatrix, distCoeffs, imagePoints, grid_width,
                                   release_object))
              mode = CALIBRATED;
          else
              mode = DETECTION;
        }
        if(view.empty())          // If there are no more images stop the loop
        {
            // if calibration threshold was not reached yet, calibrate now
            if( mode != CALIBRATED && !imagePoints.empty() )
                runCalibrationAndSave(s, imageSize,  cameraMatrix, distCoeffs, imagePoints, grid_width,
                                      release_object);
            break;
        }
        //! [get_input]

        imageSize = view.size();  // Format input image.
        if( s.flipVertical )    flip( view, view, 0 );

        //! [find_pattern]
        vector<Point2f> pointBuf;

        bool found;

        int chessBoardFlags = CALIB_CB_ADAPTIVE_THRESH | CALIB_CB_NORMALIZE_IMAGE;

        if(!s.useFisheye) {
            // fast check erroneously fails with high distortions like fisheye
            chessBoardFlags |= CALIB_CB_FAST_CHECK;
        }

        switch( s.calibrationPattern ) // Find feature points on the input format
        {
        case Settings::CHESSBOARD:
            found = findChessboardCorners( view, s.boardSize, pointBuf, chessBoardFlags);
            break;
        case Settings::CHARUCOBOARD:
            ch_detector.detectBoard( view, pointBuf, markerIds);
            found = pointBuf.size() == (size_t)((s.boardSize.height - 1)*(s.boardSize.width - 1));
            break;
        case Settings::CIRCLES_GRID:
            found = findCirclesGrid( view, s.boardSize, pointBuf );
            break;
        case Settings::ASYMMETRIC_CIRCLES_GRID:
            found = findCirclesGrid( view, s.boardSize, pointBuf, CALIB_CB_ASYMMETRIC_GRID );
            break;
        default:
            found = false;
            break;
        }
        //! [find_pattern]

        //! [pattern_found]
        if (found)                // If done with success,
        {
              // improve the found corners' coordinate accuracy for chessboard
                if( s.calibrationPattern == Settings::CHESSBOARD)
                {
                    Mat viewGray;
                    cvtColor(view, viewGray, COLOR_BGR2GRAY);
                    cornerSubPix( viewGray, pointBuf, Size(winSize,winSize),
                        Size(-1,-1), TermCriteria( TermCriteria::EPS+TermCriteria::COUNT, 30, 0.0001 ));
                }

                if( mode == CAPTURING &&  // For camera only take new samples after delay time
                    (!s.inputCapture.isOpened() || clock() - prevTimestamp > s.delay*1e-3*CLOCKS_PER_SEC) )
                {
                    imagePoints.push_back(pointBuf);
                    prevTimestamp = clock();
                    blinkOutput = s.inputCapture.isOpened();
                }

                // Draw the corners.
                if(s.calibrationPattern == Settings::CHARUCOBOARD)
                    drawChessboardCorners( view, cv::Size(s.boardSize.width-1, s.boardSize.height-1), Mat(pointBuf), found );
                else
                    drawChessboardCorners( view, s.boardSize, Mat(pointBuf), found );
        }
        //! [pattern_found]
        //----------------------------- Output Text ------------------------------------------------
        //! [output_text]
        string msg = (mode == CAPTURING) ? "100/100" :
                      mode == CALIBRATED ? "Calibrated" : "Press 'g' to start";
        int baseLine = 0;
        Size textSize = getTextSize(msg, 1, 1, 1, &baseLine);
        Point textOrigin(view.cols - 2*textSize.width - 10, view.rows - 2*baseLine - 10);

        if( mode == CAPTURING )
        {
            if(s.showUndistorted)
                msg = cv::format( "%d/%d Undist", (int)imagePoints.size(), s.nrFrames );
            else
                msg = cv::format( "%d/%d", (int)imagePoints.size(), s.nrFrames );
        }

        putText( view, msg, textOrigin, 1, 1, mode == CALIBRATED ?  GREEN : RED);

        if( blinkOutput )
            bitwise_not(view, view);
        //! [output_text]
        //------------------------- Video capture  output  undistorted ------------------------------
        //! [output_undistorted]
        if( mode == CALIBRATED && s.showUndistorted )
        {
            Mat temp = view.clone();
            if (s.useFisheye)
            {
                Mat newCamMat;
                fisheye::estimateNewCameraMatrixForUndistortRectify(cameraMatrix, distCoeffs, imageSize,
                                                                    Matx33d::eye(), newCamMat, 1);
                cv::fisheye::undistortImage(temp, view, cameraMatrix, distCoeffs, newCamMat);
            }
            else
              undistort(temp, view, cameraMatrix, distCoeffs);
        }
        //! [output_undistorted]
        //------------------------------ Show image and check for input commands -------------------
        //! [await_input]
        imshow("Image View", view);
        char key = (char)waitKey(s.inputCapture.isOpened() ? 50 : s.delay);

        if( key  == ESC_KEY )
            break;

        if( key == 'u' && mode == CALIBRATED )
           s.showUndistorted = !s.showUndistorted;

        if( s.inputCapture.isOpened() && key == 'g' )
        {
            mode = CAPTURING;
            imagePoints.clear();
        }
        //! [await_input]
    }

    // -----------------------Show the undistorted image for the image list ------------------------
    //! [show_results]
    if( s.inputType == Settings::IMAGE_LIST && s.showUndistorted && !cameraMatrix.empty())
    {
        Mat view, rview, map1, map2;

        if (s.useFisheye) // 如果使用鱼眼镜头模型进行畸变矫正
        {
            Mat newCamMat; // 定义新的相机矩阵
			
			// 估计畸变校正和矩形映射所需的新相机矩阵
            fisheye::estimateNewCameraMatrixForUndistortRectify(cameraMatrix, distCoeffs, imageSize,
                                                                Matx33d::eye(), newCamMat, 1);
			// 初始化畸变矫正和矩形映射
            fisheye::initUndistortRectifyMap(cameraMatrix, distCoeffs, Matx33d::eye(), newCamMat, imageSize,
                                             CV_16SC2, map1, map2);
        }
        else
        {
            initUndistortRectifyMap(
                cameraMatrix, distCoeffs, Mat(),
                getOptimalNewCameraMatrix(cameraMatrix, distCoeffs, imageSize, 1, imageSize, 0), imageSize,
                CV_16SC2, map1, map2);
        }

        for(size_t i = 0; i < s.imageList.size(); i++ )
        {
            view = imread(s.imageList[i], IMREAD_COLOR);
            if(view.empty())
                continue;
            remap(view, rview, map1, map2, INTER_LINEAR);
            imshow("Image View", rview);
            char c = (char)waitKey();
            if( c  == ESC_KEY || c == 'q' || c == 'Q' )
                break;
        }
    }
    //! [show_results]

    return 0;
}

//! [compute_errors] 计算重映射误差的函数
static double computeReprojectionErrors( const vector<vector<Point3f> >& objectPoints,
                                         const vector<vector<Point2f> >& imagePoints,
                                         const vector<Mat>& rvecs, const vector<Mat>& tvecs,
                                         const Mat& cameraMatrix , const Mat& distCoeffs,
                                         vector<float>& perViewErrors, bool fisheye)
{
    vector<Point2f> imagePoints2;
    size_t totalPoints = 0;
    double totalErr = 0, err;
    perViewErrors.resize(objectPoints.size());

    for(size_t i = 0; i < objectPoints.size(); ++i )
    {
        if (fisheye) // 如果是鱼眼镜头模型,使用fisheye命名空间的函数来投影点
        {
            fisheye::projectPoints(objectPoints[i], imagePoints2, rvecs[i], tvecs[i], cameraMatrix,
                                   distCoeffs);
        }
        else
        {
            projectPoints(objectPoints[i], rvecs[i], tvecs[i], cameraMatrix, distCoeffs, imagePoints2);
        }
        err = norm(imagePoints[i], imagePoints2, NORM_L2);

        size_t n = objectPoints[i].size();
        perViewErrors[i] = (float) std::sqrt(err*err/n);
        totalErr        += err*err;
        totalPoints     += n;
    }

    return std::sqrt(totalErr/totalPoints);
}
//! [compute_errors]
//! [board_corners]计算棋盘格角点位置
static void calcBoardCornerPositions(Size boardSize, float squareSize, vector<Point3f>& corners,
                                     Settings::Pattern patternType /*= Settings::CHESSBOARD*/)
{
    corners.clear();

    switch(patternType)
    {
    case Settings::CHESSBOARD: // 标准棋盘格
    case Settings::CIRCLES_GRID: // 圆形网格棋盘
        for (int i = 0; i < boardSize.height; ++i) {
            for (int j = 0; j < boardSize.width; ++j) {
                corners.push_back(Point3f(j*squareSize, i*squareSize, 0));
            }
        }
        break;
    case Settings::CHARUCOBOARD: // CHARUCO棋盘
        for (int i = 0; i < boardSize.height - 1; ++i) {
            for (int j = 0; j < boardSize.width - 1; ++j) {
                corners.push_back(Point3f(j*squareSize, i*squareSize, 0));
            }
        }
        break;
    case Settings::ASYMMETRIC_CIRCLES_GRID: // 非对称圆形网格
        for (int i = 0; i < boardSize.height; i++) {
            for (int j = 0; j < boardSize.width; j++) {
                corners.push_back(Point3f((2 * j + i % 2)*squareSize, i*squareSize, 0));
            }
        }
        break;
    default:
        break;
    }
}
//! [board_corners]
static bool runCalibration( Settings& s, Size& imageSize, Mat& cameraMatrix, Mat& distCoeffs,
                            vector<vector<Point2f> > imagePoints, vector<Mat>& rvecs, vector<Mat>& tvecs,
                            vector<float>& reprojErrs,  double& totalAvgErr, vector<Point3f>& newObjPoints,
                            float grid_width, bool release_object)
{
    //! [fixed_aspect]
    cameraMatrix = Mat::eye(3, 3, CV_64F);
    if( !s.useFisheye && s.flag & CALIB_FIX_ASPECT_RATIO )
        cameraMatrix.at<double>(0,0) = s.aspectRatio;
    //! [fixed_aspect]
    if (s.useFisheye) {
        distCoeffs = Mat::zeros(4, 1, CV_64F);
    } else {
        distCoeffs = Mat::zeros(8, 1, CV_64F);
    }

    vector<vector<Point3f> > objectPoints(1);
    calcBoardCornerPositions(s.boardSize, s.squareSize, objectPoints[0], s.calibrationPattern);
    if (s.calibrationPattern == Settings::Pattern::CHARUCOBOARD) {
        objectPoints[0][s.boardSize.width - 2].x = objectPoints[0][0].x + grid_width;
    }
    else {
        objectPoints[0][s.boardSize.width - 1].x = objectPoints[0][0].x + grid_width;
    }
    newObjPoints = objectPoints[0];

    objectPoints.resize(imagePoints.size(),objectPoints[0]);

    //Find intrinsic and extrinsic camera parameters
    double rms;

    if (s.useFisheye) {
        Mat _rvecs, _tvecs;
        rms = fisheye::calibrate(objectPoints, imagePoints, imageSize, cameraMatrix, distCoeffs, _rvecs,
                                 _tvecs, s.flag);

        rvecs.reserve(_rvecs.rows);
        tvecs.reserve(_tvecs.rows);
        for(int i = 0; i < int(objectPoints.size()); i++){
            rvecs.push_back(_rvecs.row(i));
            tvecs.push_back(_tvecs.row(i));
        }
    } else {
        int iFixedPoint = -1;
        if (release_object)
            iFixedPoint = s.boardSize.width - 1;
        rms = calibrateCameraRO(objectPoints, imagePoints, imageSize, iFixedPoint,
                                cameraMatrix, distCoeffs, rvecs, tvecs, newObjPoints,
                                s.flag | CALIB_USE_LU);
    }

    if (release_object) {
        cout << "New board corners: " << endl;
        cout << newObjPoints[0] << endl;
        cout << newObjPoints[s.boardSize.width - 1] << endl;
        cout << newObjPoints[s.boardSize.width * (s.boardSize.height - 1)] << endl;
        cout << newObjPoints.back() << endl;
    }

    cout << "Re-projection error reported by calibrateCamera: "<< rms << endl;

    bool ok = checkRange(cameraMatrix) && checkRange(distCoeffs);

    objectPoints.clear();
    objectPoints.resize(imagePoints.size(), newObjPoints);
    totalAvgErr = computeReprojectionErrors(objectPoints, imagePoints, rvecs, tvecs, cameraMatrix,
                                            distCoeffs, reprojErrs, s.useFisheye);

    return ok;
}

// Print camera parameters to the output file
static void saveCameraParams( Settings& s, Size& imageSize, Mat& cameraMatrix, Mat& distCoeffs,
                              const vector<Mat>& rvecs, const vector<Mat>& tvecs,
                              const vector<float>& reprojErrs, const vector<vector<Point2f> >& imagePoints,
                              double totalAvgErr, const vector<Point3f>& newObjPoints )
{
    FileStorage fs( s.outputFileName, FileStorage::WRITE );

    time_t tm;
    time( &tm );
    struct tm *t2 = localtime( &tm );
    char buf[1024];
    strftime( buf, sizeof(buf), "%c", t2 );

    fs << "calibration_time" << buf;

    if( !rvecs.empty() || !reprojErrs.empty() )
        fs << "nr_of_frames" << (int)std::max(rvecs.size(), reprojErrs.size());
    fs << "image_width" << imageSize.width;
    fs << "image_height" << imageSize.height;
    fs << "board_width" << s.boardSize.width;
    fs << "board_height" << s.boardSize.height;
    fs << "square_size" << s.squareSize;
    fs << "marker_size" << s.markerSize;

    if( !s.useFisheye && s.flag & CALIB_FIX_ASPECT_RATIO )
        fs << "fix_aspect_ratio" << s.aspectRatio;

    if (s.flag)
    {
        std::stringstream flagsStringStream;
        if (s.useFisheye)
        {
            flagsStringStream << "flags:"
                << (s.flag & fisheye::CALIB_FIX_SKEW ? " +fix_skew" : "")
                << (s.flag & fisheye::CALIB_FIX_K1 ? " +fix_k1" : "")
                << (s.flag & fisheye::CALIB_FIX_K2 ? " +fix_k2" : "")
                << (s.flag & fisheye::CALIB_FIX_K3 ? " +fix_k3" : "")
                << (s.flag & fisheye::CALIB_FIX_K4 ? " +fix_k4" : "")
                << (s.flag & fisheye::CALIB_RECOMPUTE_EXTRINSIC ? " +recompute_extrinsic" : "");
        }
        else
        {
            flagsStringStream << "flags:"
                << (s.flag & CALIB_USE_INTRINSIC_GUESS ? " +use_intrinsic_guess" : "")
                << (s.flag & CALIB_FIX_ASPECT_RATIO ? " +fix_aspectRatio" : "")
                << (s.flag & CALIB_FIX_PRINCIPAL_POINT ? " +fix_principal_point" : "")
                << (s.flag & CALIB_ZERO_TANGENT_DIST ? " +zero_tangent_dist" : "")
                << (s.flag & CALIB_FIX_K1 ? " +fix_k1" : "")
                << (s.flag & CALIB_FIX_K2 ? " +fix_k2" : "")
                << (s.flag & CALIB_FIX_K3 ? " +fix_k3" : "")
                << (s.flag & CALIB_FIX_K4 ? " +fix_k4" : "")
                << (s.flag & CALIB_FIX_K5 ? " +fix_k5" : "");
        }
        fs.writeComment(flagsStringStream.str());
    }

    fs << "flags" << s.flag;

    fs << "fisheye_model" << s.useFisheye;

    fs << "camera_matrix" << cameraMatrix;
    fs << "distortion_coefficients" << distCoeffs;

    fs << "avg_reprojection_error" << totalAvgErr;
    if (s.writeExtrinsics && !reprojErrs.empty())
        fs << "per_view_reprojection_errors" << Mat(reprojErrs);

    if(s.writeExtrinsics && !rvecs.empty() && !tvecs.empty() )
    {
        CV_Assert(rvecs[0].type() == tvecs[0].type());
        Mat bigmat((int)rvecs.size(), 6, CV_MAKETYPE(rvecs[0].type(), 1));
        bool needReshapeR = rvecs[0].depth() != 1 ? true : false;
        bool needReshapeT = tvecs[0].depth() != 1 ? true : false;

        for( size_t i = 0; i < rvecs.size(); i++ )
        {
            Mat r = bigmat(Range(int(i), int(i+1)), Range(0,3));
            Mat t = bigmat(Range(int(i), int(i+1)), Range(3,6));

            if(needReshapeR)
                rvecs[i].reshape(1, 1).copyTo(r);
            else
            {
                //*.t() is MatExpr (not Mat) so we can use assignment operator
                CV_Assert(rvecs[i].rows == 3 && rvecs[i].cols == 1);
                r = rvecs[i].t();
            }

            if(needReshapeT)
                tvecs[i].reshape(1, 1).copyTo(t);
            else
            {
                CV_Assert(tvecs[i].rows == 3 && tvecs[i].cols == 1);
                t = tvecs[i].t();
            }
        }
        fs.writeComment("a set of 6-tuples (rotation vector + translation vector) for each view");
        fs << "extrinsic_parameters" << bigmat;
    }

    if(s.writePoints && !imagePoints.empty() )
    {
        Mat imagePtMat((int)imagePoints.size(), (int)imagePoints[0].size(), CV_32FC2);
        for( size_t i = 0; i < imagePoints.size(); i++ )
        {
            Mat r = imagePtMat.row(int(i)).reshape(2, imagePtMat.cols);
            Mat imgpti(imagePoints[i]);
            imgpti.copyTo(r);
        }
        fs << "image_points" << imagePtMat;
    }

    if( s.writeGrid && !newObjPoints.empty() )
    {
        fs << "grid_points" << newObjPoints;
    }
}

//! [run_and_save]
bool runCalibrationAndSave(Settings& s, Size imageSize, Mat& cameraMatrix, Mat& distCoeffs,
                           vector<vector<Point2f> > imagePoints, float grid_width, bool release_object)
{
    vector<Mat> rvecs, tvecs;
    vector<float> reprojErrs;
    double totalAvgErr = 0;
    vector<Point3f> newObjPoints;

    bool ok = runCalibration(s, imageSize, cameraMatrix, distCoeffs, imagePoints, rvecs, tvecs, reprojErrs,
                             totalAvgErr, newObjPoints, grid_width, release_object);
    cout << (ok ? "Calibration succeeded" : "Calibration failed")
         << ". avg re projection error = " << totalAvgErr << endl;

    if (ok)
        saveCameraParams(s, imageSize, cameraMatrix, distCoeffs, rvecs, tvecs, reprojErrs, imagePoints,
                         totalAvgErr, newObjPoints);
    return ok;
}
//! [run_and_save]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215
  • 216
  • 217
  • 218
  • 219
  • 220
  • 221
  • 222
  • 223
  • 224
  • 225
  • 226
  • 227
  • 228
  • 229
  • 230
  • 231
  • 232
  • 233
  • 234
  • 235
  • 236
  • 237
  • 238
  • 239
  • 240
  • 241
  • 242
  • 243
  • 244
  • 245
  • 246
  • 247
  • 248
  • 249
  • 250
  • 251
  • 252
  • 253
  • 254
  • 255
  • 256
  • 257
  • 258
  • 259
  • 260
  • 261
  • 262
  • 263
  • 264
  • 265
  • 266
  • 267
  • 268
  • 269
  • 270
  • 271
  • 272
  • 273
  • 274
  • 275
  • 276
  • 277
  • 278
  • 279
  • 280
  • 281
  • 282
  • 283
  • 284
  • 285
  • 286
  • 287
  • 288
  • 289
  • 290
  • 291
  • 292
  • 293
  • 294
  • 295
  • 296
  • 297
  • 298
  • 299
  • 300
  • 301
  • 302
  • 303
  • 304
  • 305
  • 306
  • 307
  • 308
  • 309
  • 310
  • 311
  • 312
  • 313
  • 314
  • 315
  • 316
  • 317
  • 318
  • 319
  • 320
  • 321
  • 322
  • 323
  • 324
  • 325
  • 326
  • 327
  • 328
  • 329
  • 330
  • 331
  • 332
  • 333
  • 334
  • 335
  • 336
  • 337
  • 338
  • 339
  • 340
  • 341
  • 342
  • 343
  • 344
  • 345
  • 346
  • 347
  • 348
  • 349
  • 350
  • 351
  • 352
  • 353
  • 354
  • 355
  • 356
  • 357
  • 358
  • 359
  • 360
  • 361
  • 362
  • 363
  • 364
  • 365
  • 366
  • 367
  • 368
  • 369
  • 370
  • 371
  • 372
  • 373
  • 374
  • 375
  • 376
  • 377
  • 378
  • 379
  • 380
  • 381
  • 382
  • 383
  • 384
  • 385
  • 386
  • 387
  • 388
  • 389
  • 390
  • 391
  • 392
  • 393
  • 394
  • 395
  • 396
  • 397
  • 398
  • 399
  • 400
  • 401
  • 402
  • 403
  • 404
  • 405
  • 406
  • 407
  • 408
  • 409
  • 410
  • 411
  • 412
  • 413
  • 414
  • 415
  • 416
  • 417
  • 418
  • 419
  • 420
  • 421
  • 422
  • 423
  • 424
  • 425
  • 426
  • 427
  • 428
  • 429
  • 430
  • 431
  • 432
  • 433
  • 434
  • 435
  • 436
  • 437
  • 438
  • 439
  • 440
  • 441
  • 442
  • 443
  • 444
  • 445
  • 446
  • 447
  • 448
  • 449
  • 450
  • 451
  • 452
  • 453
  • 454
  • 455
  • 456
  • 457
  • 458
  • 459
  • 460
  • 461
  • 462
  • 463
  • 464
  • 465
  • 466
  • 467
  • 468
  • 469
  • 470
  • 471
  • 472
  • 473
  • 474
  • 475
  • 476
  • 477
  • 478
  • 479
  • 480
  • 481
  • 482
  • 483
  • 484
  • 485
  • 486
  • 487
  • 488
  • 489
  • 490
  • 491
  • 492
  • 493
  • 494
  • 495
  • 496
  • 497
  • 498
  • 499
  • 500
  • 501
  • 502
  • 503
  • 504
  • 505
  • 506
  • 507
  • 508
  • 509
  • 510
  • 511
  • 512
  • 513
  • 514
  • 515
  • 516
  • 517
  • 518
  • 519
  • 520
  • 521
  • 522
  • 523
  • 524
  • 525
  • 526
  • 527
  • 528
  • 529
  • 530
  • 531
  • 532
  • 533
  • 534
  • 535
  • 536
  • 537
  • 538
  • 539
  • 540
  • 541
  • 542
  • 543
  • 544
  • 545
  • 546
  • 547
  • 548
  • 549
  • 550
  • 551
  • 552
  • 553
  • 554
  • 555
  • 556
  • 557
  • 558
  • 559
  • 560
  • 561
  • 562
  • 563
  • 564
  • 565
  • 566
  • 567
  • 568
  • 569
  • 570
  • 571
  • 572
  • 573
  • 574
  • 575
  • 576
  • 577
  • 578
  • 579
  • 580
  • 581
  • 582
  • 583
  • 584
  • 585
  • 586
  • 587
  • 588
  • 589
  • 590
  • 591
  • 592
  • 593
  • 594
  • 595
  • 596
  • 597
  • 598
  • 599
  • 600
  • 601
  • 602
  • 603
  • 604
  • 605
  • 606
  • 607
  • 608
  • 609
  • 610
  • 611
  • 612
  • 613
  • 614
  • 615
  • 616
  • 617
  • 618
  • 619
  • 620
  • 621
  • 622
  • 623
  • 624
  • 625
  • 626
  • 627
  • 628
  • 629
  • 630
  • 631
  • 632
  • 633
  • 634
  • 635
  • 636
  • 637
  • 638
  • 639
  • 640
  • 641
  • 642
  • 643
  • 644
  • 645
  • 646
  • 647
  • 648
  • 649
  • 650
  • 651
  • 652
  • 653
  • 654
  • 655
  • 656
  • 657
  • 658
  • 659
  • 660
  • 661
  • 662
  • 663
  • 664
  • 665
  • 666
  • 667
  • 668
  • 669
  • 670
  • 671
  • 672
  • 673
  • 674
  • 675
  • 676
  • 677
  • 678
  • 679
  • 680
  • 681
  • 682
  • 683
  • 684
  • 685
  • 686
  • 687
  • 688
  • 689
  • 690
  • 691
  • 692
  • 693
  • 694
  • 695
  • 696
  • 697
  • 698
  • 699
  • 700
  • 701
  • 702
  • 703
  • 704
  • 705
  • 706
  • 707
  • 708
  • 709
  • 710
  • 711
  • 712
  • 713
  • 714
  • 715
  • 716
  • 717
  • 718
  • 719
  • 720
  • 721
  • 722
  • 723
  • 724
  • 725
  • 726
  • 727
  • 728
  • 729
  • 730
  • 731
  • 732
  • 733
  • 734
  • 735
  • 736
  • 737
  • 738
  • 739
  • 740
  • 741
  • 742
  • 743
  • 744
  • 745
  • 746
  • 747
  • 748
  • 749
  • 750
  • 751
  • 752
  • 753
  • 754
  • 755
  • 756
  • 757
  • 758
  • 759
  • 760
  • 761
  • 762
  • 763
  • 764
  • 765
  • 766
  • 767
  • 768
  • 769
  • 770
  • 771
  • 772
  • 773
  • 774
  • 775
  • 776
  • 777
  • 778
  • 779
  • 780
  • 781
  • 782
  • 783
  • 784
  • 785
  • 786
  • 787
  • 788
  • 789
  • 790
  • 791
  • 792
  • 793
  • 794
  • 795
  • 796
  • 797
  • 798
  • 799
  • 800
  • 801
  • 802
  • 803
  • 804
  • 805
  • 806
  • 807
  • 808
  • 809
  • 810
  • 811
  • 812
  • 813
  • 814
  • 815
  • 816
  • 817
  • 818
  • 819
  • 820
  • 821
  • 822
  • 823
  • 824
  • 825
  • 826
  • 827
  • 828
  • 829
  • 830
  • 831
  • 832
  • 833
  • 834
  • 835
  • 836
  • 837
  • 838
  • 839
  • 840
  • 841
  • 842
  • 843
  • 844
  • 845
  • 846
  • 847
  • 848
  • 849

注:该标定例程为OpenCV自带,可自行查找,也可从我的博客下载https://download.csdn.net/download/jppdss/89046059

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小小林熬夜学编程/article/detail/341165
推荐阅读
相关标签
  

闽ICP备14008679号