赞
踩
前向过程和后向过程的代码都在GaussianDiffusion
这个类中。
有问题可以一起讨论!
Why self-conditioning? · Issue #94 · lucidrains/denoising-diffusion-pytorch (github.com)
Conditional generation · Issue #7 · lucidrains/denoising-diffusion-pytorch (github.com)
Questions About DDPM · Issue #10 · lucidrains/denoising-diffusion-pytorch (github.com)
The difference between pred_x0, pred_v, pred_noise three objectives · Issue #153 · lucidrains/denoising-diffusion-pytorch (github.com)
首先是p_losses函数,这个是训练过程的主体部分。
def p_losses(self, x_start, t, noise = None): b, c, h, w = x_start.shape # 首先随机生成噪声 noise = default(noise, lambda: torch.randn_like(x_start)) # noise sample # 噪声采样,注意这个是一次性完成的 x = self.q_sample(x_start = x_start, t = t, noise = noise) # if doing self-conditioning, 50% of the time, predict x_start from current set of times # and condition with unet with that # this technique will slow down training by 25%, but seems to lower FID significantly # 判断是否进行self-condition,就是利用前面步骤预测出的x0来辅助当前的预测 x_self_cond = None if self.self_condition and random() < 0.5: with torch.no_grad(): x_self_cond = self.model_predictions(x, t).pred_x_start x_self_cond.detach_() # predict and take gradient step # 将采样的x和self condition的x一起输入到model当中,这个model是UNet结构 model_out = self.model(x, t, x_self_cond) # 模型预测的目标,分为三种 if self.objective == 'pred_noise': target = noise elif self.objective == 'pred_x0': target = x_start elif self.objective == 'pred_v': v = self.predict_v(x_start, t, noise) target = v else: raise ValueError(f'unknown objective {self.objective}') # 计算损失 loss = self.loss_fn(model_out, target, reduction = 'none') loss = reduce(loss, 'b ... -> b (...)', 'mean') loss = loss * extract(self.p2_loss_weight, t, loss.shape) return loss.mean()
对其中的extract函数进行分析,extract函数实现如下:
def extract(a, t, x_shape):
# Extract some coefficients at specified timesteps,
# then reshape to [batch_size, 1, 1, 1, 1, ...] for broadcasting purposes.
b, *_ = t.shape
# 使用了gather函数
out = a.gather(-1, t)
return out.reshape(b, *((1,) * (len(x_shape) - 1)))
然后介绍p_losses函数中使用的其他函数,第一个是q_sample函数,它的作用是加上噪声,对应论文的公式:
其中self.sqrt_alphas_cumprod
和self.sqrt_one_minus_alphas_cumprod
分别是alpha的累乘值和1-alpha的累乘值,x_start相当于x0,noise相当于z。
def q_sample(self, x_start, t, noise=None):
noise = default(noise, lambda: torch.randn_like(x_start))
return (
extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
extract(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise
)
然后是model_predictions函数,它的实现如下:
def model_predictions(self, x, t, x_self_cond = None, clip_x_start = False): # 输入到UNet结构中获得输出 model_output = self.model(x, t, x_self_cond) maybe_clip = partial(torch.clamp, min = -1., max = 1.) if clip_x_start else identity # 暂不明确它的作用 if self.objective == 'pred_noise': pred_noise = model_output x_start = self.predict_start_from_noise(x, t, pred_noise) x_start = maybe_clip(x_start) elif self.objective == 'pred_x0': x_start = model_output x_start = maybe_clip(x_start) pred_noise = self.predict_noise_from_start(x, t, x_start) elif self.objective == 'pred_v': v = model_output x_start = self.predict_start_from_v(x, t, v) x_start = maybe_clip(x_start) pred_noise = self.predict_noise_from_start(x, t, x_start) # 返回得到的噪声和 return ModelPrediction(pred_noise, x_start)
model_predictions函数中有一个难点,就是其中的self.objective,它有三种形式:
如图所示:
在上面的三种objective中,还涉及到了几种预测方法的实现,具体如下:
(1)predict_start_from_noise:这个函数的作用是根据噪声noise预测最开始的x,也就是去噪的图像。
其中self.sqrt_recip_alphas_cumprod
和self.sqrt_recipm1_alphas_cumprod
来自
公式,它们分别为:
和
。
公式来源文章:DDPM
def predict_start_from_noise(self, x_t, t, noise):
return (
extract(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t -
extract(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
)
它对应论文中的公式如下:
(2)predict_noise_from_start:这个函数的作用是根据图像预测噪声,也就是加噪声。
def predict_noise_from_start(self, x_t, t, x0):
return (
(extract(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - x0) / \
extract(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
)
它对应论文中的公式如下:
需要注意它是反推过来的,过程如下:
(3)predict_v:预测速度v
def predict_v(self, x_start, t, noise):
return (
extract(self.sqrt_alphas_cumprod, t, x_start.shape) * noise -
extract(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * x_start
)
它对应论文中的公式:
(4)predict_start_from_v:根据速度v预测最初的x,也就是图像
def predict_start_from_v(self, x_t, t, v):
return (
extract(self.sqrt_alphas_cumprod, t, x_t.shape) * x_t -
extract(self.sqrt_one_minus_alphas_cumprod, t, x_t.shape) * v
)
它对应论文中的公式如下:其中zt相当于xt。
@torch.no_grad()
def sample(self, batch_size = 16, return_all_timesteps = False):
image_size, channels = self.image_size, self.channels
# 采样的函数
sample_fn = self.p_sample_loop if not self.is_ddim_sampling else self.ddim_sample
# 调用该函数
return sample_fn((batch_size, channels, image_size, image_size), return_all_timesteps = return_all_timesteps)
该函数的作用是获取采样的函数然后进行调用,采样函数分成两种:p_sample_loop和ddim_sample。
@torch.no_grad() def p_sample_loop(self, shape, return_all_timesteps = False): batch, device = shape[0], self.betas.device # 随机生成噪声图像 img = torch.randn(shape, device = device) imgs = [img] x_start = None # 遍历所有的t for t in tqdm(reversed(range(0, self.num_timesteps)), desc = 'sampling loop time step', total = self.num_timesteps): # 判断是否使用self-condition self_cond = x_start if self.self_condition else None # 进行采样,得到去噪的图像 img, x_start = self.p_sample(img, t, self_cond) imgs.append(img) # 判断是否返回每个步骤的img还是最后一步的img ret = img if not return_all_timesteps else torch.stack(imgs, dim = 1) # 归一化 ret = self.unnormalize(ret) return ret
其中涉及到归一化函数self.unnormalize
,含有两种
# normalization functions
def normalize_to_neg_one_to_one(img):
return img * 2 - 1
def unnormalize_to_zero_to_one(t):
return (t + 1) * 0.5
@torch.no_grad()
def p_sample(self, x, t: int, x_self_cond = None):
b, *_, device = *x.shape, x.device
batched_times = torch.full((b,), t, device = x.device, dtype = torch.long)
# 获得平均值,方差和x0
model_mean, _, model_log_variance, x_start = self.p_mean_variance(x = x, t = batched_times, x_self_cond = x_self_cond, clip_denoised = True)
# 随机生成一个噪声
noise = torch.randn_like(x) if t > 0 else 0. # no noise if t == 0
# 得到预测的图像,img = 平均值 + exp(0.5 * 方差) * noise
pred_img = model_mean + (0.5 * model_log_variance).exp() * noise
return pred_img, x_start
其中含有p_mean_variance
函数,代码实现如下:
def p_mean_variance(self, x, t, x_self_cond = None, clip_denoised = True):
# 输入到UNet网络进行预测
preds = self.model_predictions(x, t, x_self_cond)
# 得到预测的x0
x_start = preds.pred_x_start
# 压缩x0中值的范围至[-1,1]
if clip_denoised:
x_start.clamp_(-1., 1.)
# 得到x0后根据xt和t得到分布的平均值和方差
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start = x_start, x_t = x, t = t)
return model_mean, posterior_variance, posterior_log_variance, x_start
其中q_posterior
函数的实现如下:
def q_posterior(self, x_start, x_t, t):
# 计算平均值
posterior_mean = (
extract(self.posterior_mean_coef1, t, x_t.shape) * x_start +
extract(self.posterior_mean_coef2, t, x_t.shape) * x_t
)
# 计算方差
posterior_variance = extract(self.posterior_variance, t, x_t.shape)
# 获得一个压缩范围的方差,且取对数
posterior_log_variance_clipped = extract(self.posterior_log_variance_clipped, t, x_t.shape)
return posterior_mean, posterior_variance, posterior_log_variance_clipped
平均值和方差对应的公式如下:
其中self.posterior_mean_coef1
对应的是x0前面的系数,self.posterior_mean_coef2
对应的是xt前面的系数。
self.posterior_variance
对应的beta那部分的系数。
@torch.no_grad() def ddim_sample(self, shape, return_all_timesteps = False): batch, device, total_timesteps, sampling_timesteps, eta, objective = shape[0], self.betas.device, self.num_timesteps, self.sampling_timesteps, self.ddim_sampling_eta, self.objective times = torch.linspace(-1, total_timesteps - 1, steps = sampling_timesteps + 1) # [-1, 0, 1, 2, ..., T-1] when sampling_timesteps == total_timesteps times = list(reversed(times.int().tolist())) time_pairs = list(zip(times[:-1], times[1:])) # [(T-1, T-2), (T-2, T-3), ..., (1, 0), (0, -1)] img = torch.randn(shape, device = device) imgs = [img] x_start = None for time, time_next in tqdm(time_pairs, desc = 'sampling loop time step'): time_cond = torch.full((batch,), time, device = device, dtype = torch.long) self_cond = x_start if self.self_condition else None pred_noise, x_start, *_ = self.model_predictions(img, time_cond, self_cond, clip_x_start = True) imgs.append(img) if time_next < 0: img = x_start continue alpha = self.alphas_cumprod[time] alpha_next = self.alphas_cumprod[time_next] sigma = eta * ((1 - alpha / alpha_next) * (1 - alpha_next) / (1 - alpha)).sqrt() c = (1 - alpha_next - sigma ** 2).sqrt() noise = torch.randn_like(img) img = x_start * alpha_next.sqrt() + \ c * pred_noise + \ sigma * noise ret = img if not return_all_timesteps else torch.stack(imgs, dim = 1) ret = self.unnormalize(ret) return ret
上面部分依据的公式为:(文章)
对这些函数的功能做一个总结,为:
后续会继续更新!
对您有帮助请点赞收藏哦!
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。