赞
踩
情感分析是一段文字表达的情绪状态。其中,一段文本可以使一个句子、一个段落或者一个文档。主要涉及两个问题:文本表达和文本分类。在深度学习出现之前,主流的表示方法有BOW(词袋模型)和topic model(主题模型),分类模型主要有SVM和LR。
载入数据:IMDB情感分析数据集,训练集和测试集分别包含了25000条已标注的电影评论,满分了10分,小于等于4为负面评论。
- # -*- coding: utf-8 -*-
-
- import numpy as np
- # 加载已训练好的词典向量模型,包含400000的文本向量,每行有50维的数据
- words_list = np.load('wordsList.npy')
- print('载入word列表')
- words_list = words_list.tolist() # 转化为list
- words_list = [word.decode('UTF-8') for word in words_list]
- word_vectors = np.load('wordVectors.npy')
- print('载入文本向量')
-
- print(len(words_list))
- print(word_vectors.shape)
-
- Home_index = words_list.index("home")
- print(word_vectors[Home_index])
-
- # 加载电影数据
- import os
- from os.path import isfile, join
- pos_files = ['pos/' + f for f in os.listdir('pos/') if isfile(join('pos/', f))]
- neg_files = ['neg/' + f for f in os.listdir('neg/') if isfile(join('neg/', f))]
- num_words = []
- for pf in pos_files:
- with open(pf, "r", encoding='utf-8') as f:
- line = f.readline()
- counter = len(line.split())
- num_words.append(counter)
- print('正面评价完结')
-
- for pf in neg_files:
- with open(pf, "r", encoding='utf-8') as f:
- line = f.readline()
- counter = len(line.split())
- num_words.append(counter)
- print('负面评价完结')
-
- num_files = len(num_words)
- print('文件总数', num_files)
- print('所有的词的数量', sum(num_words))
- print('平均文件词的长度', sum(num_words)/len(num_words))
-
- '''
- # 可视化
- import matplotlib
- import matplotlib.pyplot as plt
- matplotlib.use('qt4agg')
- # 指定默认字体
- matplotlib.rcParams['font.sans-serif'] = ['SimHei']
- matplotlib.rcParams['font.family'] = 'sans-serif'
- #%matplotlib inline
- plt.hist(num_words, 50, facecolor='g')
- plt.xlabel('文本长度')
- plt.ylabel('频次')
- plt.axis([0, 1200, 0, 8000])
- plt.show()
- '''
-
- # 大部分文本都在230之内
- max_seg_len = 300
-
- # 将文本生成一个索引矩阵,得到一个25000x300矩阵
- import re
- strip_special_chars = re.compile("[^A-Za-z0-9 ]+")
-
- def cleanSentence(string):
- string = string.lower().replace("<br />", " ")
- return re.sub(strip_special_chars, "", string.lower())
- print('保存idxMatrix...')
- max_seg_num = 300
- ids = np.zeros((num_files, max_seg_num), dtype="int32")
- file_count = 0
- '''
- for pf in pos_files:
- with open(pf, "r", encoding="utf-8") as f:
- indexCounter = 0
- line = f.readline()
- cleanedLine = cleanSentence(line)
- split = cleanedLine.split()
- for word in split:
- try:
- ids[file_count][indexCounter] = words_list.index(word)
- except ValueError:
- ids[file_count][indexCounter] = 399999 # 未知的词
- indexCounter = indexCounter + 1
- if indexCounter >= max_seg_num:
- break
- file_count = file_count + 1
- print(file_count)
- print('保存完成1')
- for nf in neg_files:
- with open(nf, "r", encoding="utf-8") as f:
- indexCounter = 0
- line = f.readline()
- cleanedLine = cleanSentence(line)
- split = cleanedLine.split()
- for word in split:
- try:
- ids[file_count][indexCounter] = words_list.index(word)
- except ValueError:
- ids[file_count][indexCounter] = 399999 # 未知的词
- indexCounter = indexCounter + 1
- if indexCounter >= max_seg_num:
- break
- file_count = file_count + 1
- # 保存到文件
- np.save('idxMatrix', ids)
- print('保存完成2')
- '''
-
- # 模型设置
- batch_size = 24
- lstm_units = 64
- num_labels = 2
- iterations = 200000
- max_seg_num = 250
- ids = np.load('idsMatrix.npy')
-
- # 返回一个数据集的迭代器, 返回一批训练集合
- from random import randint
- def get_train_batch():
- labels = []
- arr = np.zeros([batch_size, max_seg_num])
- for i in range(batch_size):
- if (i % 2 == 0):
- num = randint(1, 11499)
- labels.append([1, 0])
- else:
- num = randint(13499, 24999)
- labels.append([0, 1])
- arr[i] = ids[num-1: num]
- return arr, labels
-
- def get_test_batch():
- labels = []
- arr = np.zeros([batch_size, max_seg_num])
- for i in range(batch_size):
- num = randint(11499, 13499)
- if (num <= 12499):
- labels.append([1, 0])
- else:
- labels.append([0, 1])
- arr[i] = ids[num-1:num]
- return arr, labels
-
- num_dimensions = 300 # Dimensions for each word vector
-
- import tensorflow as tf
- tf.reset_default_graph()
- labels = tf.placeholder(tf.float32, [batch_size, num_labels])
- input_data = tf.placeholder(tf.int32, [batch_size, max_seg_num])
-
- data = tf.Variable(tf.zeros([batch_size, max_seg_num, num_dimensions]), dtype=tf.float32)
- data = tf.nn.embedding_lookup(word_vectors, input_data)
-
- # 配置LSTM网络
- lstmCell = tf.contrib.rnn.BasicLSTMCell(lstm_units)
- lstmCell = tf.contrib.rnn.DropoutWrapper(cell=lstmCell, output_keep_prob=0.75) # 避免一些过拟合
- value, _ = tf.nn.dynamic_rnn(lstmCell, data, dtype=tf.float32)
-
- # 第一个输出可以被认为是最后的隐藏状态,该向量将重新确定维度,然后乘以一个权重加上偏置,获得最终的label
- weight = tf.Variable(tf.truncated_normal([lstm_units, num_labels]))
- bias = tf.Variable(tf.constant(0.1, shape=[num_labels]))
- value = tf.transpose(value, [1, 0, 2])
- last = tf.gather(value, int(value.get_shape()[0]) - 1)
- prediction = (tf.matmul(last, weight) + bias)
-
- # 预测函数以及正确率评估参数
- correct_pred = tf.equal(tf.argmax(prediction, 1), tf.argmax(labels, 1))
- accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
-
- # 将标准的交叉熵损失函数定义为损失值,选择Adam作为优化函数
- loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=prediction, labels=labels))
- optimizer = tf.train.AdamOptimizer().minimize(loss)
-
- #sess = tf.InteractiveSession(config=tf.ConfigProto(allow_soft_placement, log_device_placement))
- sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True, log_device_placement=False))
-
- #saver = tf.train.Saver()
- #saver.restore(sess, tf.train.latest_checkpoint('models'))
-
- iterations = 10
- for i in range(iterations):
- next_batch, next_batch_labels = get_test_batch()
- print("正确率:", (sess.run(
- accuracy, {input_data: next_batch, labels: next_batch_labels})) * 100)
-
- '''
- # 使用tensorboard可视化损失值和正确值
- import datetime
- sess = tf.InteractiveSession()
- #tf.device("/cpu:0")
- saver = tf.train.Saver()
- sess.run(tf.global_variables_initializer())
- tf.summary.scalar('Loss', loss)
- tf.summary.scalar('Accuracy', accuracy)
- merged = tf.summary.merge_all()
- logdir = "tensorboard/" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S") + "/"
- writer = tf.summary.FileWriter(logdir, sess.graph)
- for i in range(iterations):
- # 下个批次的数据
- nextBatch, nextBatchLabels = get_train_batch();
- sess.run(optimizer, {input_data: nextBatch, labels: nextBatchLabels})
- # 每50次写入一次leadboard
- if (i % 50 == 0):
- summary = sess.run(merged, {input_data: nextBatch, labels: nextBatchLabels})
- writer.add_summary(summary, i)
- # 每10,000次保存一个模型
- if (i % 10000 == 0 and i != 0):
- save_path = saver.save(sess, "models/pretrained_lstm.ckpt", global_step=i)
- print("saved to %s" % save_path)
- writer.close()
- '''
-
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。