当前位置:   article > 正文

python计算复数拟合的MAE、MSE、RMSE和R2Score分数_python复数方程组拟合

python复数方程组拟合

首先先上概念:

(yi为测量值,yi_hat为拟合值)

平均绝对误差(MAE)Mean Absolute Error,是绝对误差的平均值:

MAE = \frac{1}{n}\sum_{i=1}^{n}\left | \hat{y}_{i} - y_{i} \right |

均方误差MSE(mean-square error) 该统计参数是预测数据和原始数据对应点误差的平方和的均值:

MSE = \frac{1}{n}\sum_{i=1}^{n}( \hat{y}_{i} - y_{i})^{2}

均方根误差RMSE(root mean square error)是均方误差的根号:

MSE =\sqrt{\frac{1}{n}\sum_{i=1}^{n}( \hat{y}_{i} - y_{i})^{2}}

决定系数R2(coefficient of determination),也称判定系数或者拟合优度:

决定系数R2

实数拟合中的计算代码如下:

其中Z为测量值,Z_fit为拟合值

原生实现:(代码1)

  1. # 原生实现 衡量线性回归的MSE 、 RMSE、 MAE、r2
  2. import numpy as np
  3. from math import sqrt
  4. mse = np.sum((Z - Z_fit) ** 2) / len(Z)
  5. rmse = sqrt(mse)
  6. mae = np.sum(np.absolute(Z - Z_fit)) / len(Z)
  7. r2 = 1-mse/ np.var(Z) # 均方误差/方差
  8. print(" mae:",mae,"mse:",mse," rmse:",rmse," r2:",r2)

python的sklearn库内置函数实现:(代码2)

其中y_test为测量值, y_predict为拟合值

  1. # 使用sklearn调用衡量线性回归的MSE 、 RMSE、 MAE、r2
  2. import numpy as np
  3. from sklearn.metrics import mean_absolute_error
  4. from sklearn.metrics import mean_squared_error
  5. from sklearn.metrics import r2_score
  6. print("mean_absolute_error:", mean_absolute_error(y_test, y_predict))
  7. print("mean_squared_error:", mean_squared_error(y_test, y_predict))
  8. print("rmse:", np.sqrt(mean_squared_error(y_test, y_predict)))
  9. print("r2 score:", r2_score(y_test, y_predict))

复数拟合:电化学阻抗谱等效电路等需要复数拟合曲线评价R2分数和RMSE,即Z和Z_fit为复数时(格式为:a+bj)需要将距离改成模值,将差的平方改成模的平方,将求方差改成先求模值再求模值的方差,具体代码如下:(改编代码1,代码2的库函数不能应用于复数域)

  1. """
  2. # 实数拟合的MSE 、 RMSE、 MAE、r2
  3. mse = np.sum((Z - Z_fit) ** 2) / len(Z)
  4. rmse = sqrt(mse)
  5. mae = np.sum(np.absolute(Z - Z_fit)) / len(Z)
  6. r2 = 1-mse/ np.var(Z)
  7. """
  8. # 复数拟合的MSE 、 RMSE、 MAE、r2
  9. mse = np.sum(abs(Z - Z_fit) ** 2) / len(Z)
  10. rmse = sqrt(mse)
  11. mae = np.sum(abs(Z - Z_fit)) / len(Z)
  12. r2 = 1-mse/ np.var(abs(Z))#均方误差/方差
  13. print(" mae:",mae,"mse:",mse," rmse:",rmse," r2:",r2)

希望对你有帮助~嘻嘻

参考文章:Python计算统计分析MSE 、 RMSE、 MAE、r2

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小小林熬夜学编程/article/detail/367744?site
推荐阅读
相关标签
  

闽ICP备14008679号