赞
踩
(1)若
f
(
x
)
=
c
f(x)=c
f(x)=c为常数,则共轭梯度
∂
c
∂
x
∗
=
0
\frac{\partial c}{\partial x^*}=0
∂x∗∂c=0。
(2)线性法则:若
f
(
x
)
f(x)
f(x)和
g
(
x
)
g(x)
g(x)分别是向量
x
x
x的实值函数,
c
1
c_1
c1和
c
2
c_2
c2为复常数,则
∂
[
c
1
f
(
x
)
+
c
2
g
(
x
)
]
∂
x
∗
=
c
1
∂
f
(
x
)
∂
x
∗
+
c
2
∂
g
(
x
)
∂
x
∗
\frac{\partial [c_1f(x)+c_2g(x)]}{\partial x^*}=c_1\frac{\partial f(x)}{\partial x^*}+c_2\frac{\partial g(x)}{\partial x^*}
∂x∗∂[c1f(x)+c2g(x)]=c1∂x∗∂f(x)+c2∂x∗∂g(x)
(3)乘积法则:
矩阵
A
A
A的奇异值应该能够描述
A
A
A的奇异性质。
定理
令
A
∈
C
m
×
n
(
m
>
n
)
A \in C^{m\times n}(m > n)
A∈Cm×n(m>n)的奇异值为
σ
1
≥
σ
2
≥
⋅
⋅
⋅
≥
σ
n
≥
0
\sigma_1 \ge \sigma_2 \ge ··· \ge \sigma_n \ge 0
σ1≥σ2≥⋅⋅⋅≥σn≥0
则
σ
k
=
min
E
∈
C
m
×
n
∣
∣
E
∣
∣
F
:
r
a
n
k
(
A
+
E
)
≠
k
−
1
,
k
=
1
,
2
,
⋅
⋅
⋅
,
n
\sigma_k = \min_{E \in C^{m\times n}}{||E||_F : rank(A+E)\ne k-1},k=1,2,···,n
σk=E∈Cm×nmin∣∣E∣∣F:rank(A+E)=k−1,k=1,2,⋅⋅⋅,n
并且存在一满足
∣
∣
E
k
∣
∣
F
=
σ
k
||E_k||_F=\sigma_k
∣∣Ek∣∣F=σk的误差矩阵
E
E
E使得
r
a
n
k
(
A
+
E
k
)
=
k
−
1
,
k
=
1
,
2
,
⋅
⋅
⋅
,
n
rank(A+E_k)=k-1,k=1,2,···,n
rank(A+Ek)=k−1,k=1,2,⋅⋅⋅,n
定义表明,奇异值与使得原矩阵
A
A
A的秩减小1的误差矩阵
E
k
E_k
Ek的Frobenius范数相等。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。