当前位置:   article > 正文

数据结构——B树,B+树,平衡树,红黑树_b+树叶子结点关键字个数

b+树叶子结点关键字个数

1. B树

B树也称B-树,它是一颗多路平衡查找树。二叉树我想大家都不陌生,其实,B树和后面讲到的B+树也是从最简单的二叉树变换而来的,并没有什么神秘的地方,下面我们来看看B树的定义。

  • 每个节点最多有m-1个关键字(可以存有的键值对)。
  • 根节点最少可以只有1个关键字。
  • 非根节点至少有m/2个关键字。
  • 每个节点中的关键字都按照从小到大的顺序排列,每个关键字的左子树中的所有关键字都小于它,而右子树中的所有关键字都大于它。
  • 所有叶子节点都位于同一层,或者说根节点到每个叶子节点的长度都相同。
  • 每个节点都存有索引和数据,也就是对应的key和value。
  • 节点的关键字数量范围:1 <= k <= m-1
  • 非根节点的关键字数量范围:m/2 <= k <= m-1

注意,描述一颗B树时需要指定它的阶数,阶数表示了一个节点最多有多少个孩子节点,一般用字母m表示阶数。

比如这里有一个5阶的B树,根节点数量范围:1 <= k <= 4,非根节点数量范围:2 <= k <= 4。

1.1 B树插入

规则: 判断当前结点key的个数是否小于等于m-1,如果满足,直接插入即可,如果不满足,将节点的中间的key将这个节点分为左右两部分,中间的节点放到父节点中即可。

例子:在5阶B树中,结点最多有4个key,最少有2个key(注意:下面的节点统一用一个节点表示key和value)

  • 插入18,70,50,40
    在这里插入图片描述
  • 插入22
    在这里插入图片描述
    插入22时,发现这个节点的关键字已经大于4了,所以需要进行分裂,分裂的规则在上面已经讲了,分裂之后,如下。
    在这里插入图片描述
  • 接着插入23,25,39
    在这里插入图片描述
    分裂,得到下面的:
    在这里插入图片描述

1.2 B树的删除

B树的删除操作相对于插入操作是相对复杂一些的,但是,你知道记住几种情况,一样可以很轻松的掌握的。

  • 现在有一个初始状态是下面这样的B树,然后进行删除操作。
    在这里插入图片描述
  • 删除15,这种情况是删除叶子节点的元素,如果删除之后,节点数还是大于m/2,这种情况只要直接删除即可。
    在这里插入图片描述
    在这里插入图片描述
  • 接着,我们把22删除,这种情况的规则:22是非叶子节点,对于非叶子节点的删除,我们需要用后继key(元素)覆盖要删除的key,然后在后继key所在的子支中删除该后继key。对于删除22,需要将后继元素24移到被删除的22所在的节点。
    在这里插入图片描述
    在这里插入图片描述
  • 此时发现26所在的节点只有一个元素,小于2个(m/2),这个节点不符合要求,这时候的规则(向兄弟节点借元素):如果删除叶子节点,如果删除元素后元素个数少于(m/2),并且它的兄弟节点的元素大于(m/2),也就是说兄弟节点的元素比最少值m/2还多,将先将父节点的元素移到该节点,然后将兄弟节点的元素再移动到父节点。这样就满足要求了。
    在这里插入图片描述
    在这里插入图片描述
  • 接着删除28,删除叶子节点,删除后不满足要求,所以,我们需要考虑向兄弟节点借元素,但是,兄弟节点也没有多的节点(2个),借不了,怎么办呢?如果遇到这种情况,首先,还是将先将父节点的元素移到该节点,然后,将当前节点及它的兄弟节点中的key合并,形成一个新的节点。
    在这里插入图片描述
    移动之后,跟兄弟节点合并。
    在这里插入图片描述

2. B+树

B+树其实和B树是非常相似的,我们首先看看:

  • B+树所有的数据都存在叶子节点
  • 非叶子节点都是索引

相同点:

  • 根节点至少一个元素
  • 非根节点元素范围:m/2 <= k <= m-1

不同:

  • B+树有两种类型的节点:内部结点(也称索引结点)和叶子结点。内部节点就是非叶子节点,内部节点不存储数据,只存储索引,数据都存储在叶子节点。
  • 内部结点中的key都按照从小到大的顺序排列,对于内部结点中的一个key,左树中的所有key都小于它,右子树中的key都大于等于它。叶子结点中的记录也按照key的大小排列。
  • 每个叶子结点都存有相邻叶子结点的指针,叶子结点本身依关键字的大小自小而大顺序链接。
  • 父节点存有右孩子的第一个元素的索引。

在这里插入图片描述

2.1 插入操作

规则: 当节点元素数量大于m-1的时候,按中间元素分裂成左右两部分,中间元素分裂到父节点当做索引存储,但是,本身中间元素还是分裂右边这一部分的。

下面以一颗5阶B+树的插入过程为例,5阶B+树的节点最少2个元素,最多4个元素。

  • 插入5,10,15,20
    在这里插入图片描述
  • 插入25,此时元素数量大于4个了,分裂
    在这里插入图片描述
  • 接着插入26,30,继续分裂
    在这里插入图片描述
    在这里插入图片描述

2.2 删除操作

规则叶子节点有指针的存在,向兄弟节点借元素时,不需要通过父节点了,而是可以直接通过兄弟节移动即可(前提是兄弟节点的元素大于m/2),然后更新父节点的索引;如果兄弟节点的元素不大于m/2(兄弟节点也没有多余的元素),则将当前节点和兄弟节点合并,并且删除父节点中的key

  • 初始状态
    在这里插入图片描述
  • 删除10,删除后,不满足要求,发现左边兄弟节点有多余的元素,所以去借元素,最后,修改父节点索引
    在这里插入图片描述
  • 发现父节点索引也不满足条件,所以,需要做跟上面一步一样的操作
    在这里插入图片描述
    这样,B+树的删除操作也就完成了,是不是看完之后,觉得非常简单!
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小小林熬夜学编程/article/detail/397284
推荐阅读
相关标签
  

闽ICP备14008679号