赞
踩
你的问题是因为你的字典2是基于元组的。这是一个极简主义的例子,它表明当bigram是字符串时,这是有效的。如果要分别处理每个文件,可以将其传递给矢量器.transform()作为列表。在from sklearn.feature_extraction.text import CountVectorizer
Doc1 = 'Wimbledon is one of the four Grand Slam tennis tournaments, the others being the Australian Open, the French Open and the US Open.'
Doc2 = 'Since the Australian Open shifted to hardcourt in 1988, Wimbledon is the only major still played on grass'
doc_set = [Doc1, Doc2]
my_vocabulary= ['Grand Slam', 'Australian Open', 'French Open', 'US Open']
vectorizer = CountVectorizer(ngram_range=(2, 2))
vectorizer.fit_transform(my_vocabulary)
term_count = vectorizer.transform(doc_set)
# Show the index key for each bigram
vectorizer.vocabulary_
Out[11]: {'grand slam': 2, 'australian open': 0, 'french open': 1, 'us open': 3}
# Sparse matrix of bigram counts - each row corresponds to a document
term_count.toarray()
Out[12]:
array([[1, 1, 1, 1],
[1, 0, 0, 0]], dtype=int64)
你可以使用列表理解来修改你的词典2。在
^{pr2}$
编辑:基于以上,我认为你可以使用以下代码:from sklearn.feature_extraction.text import CountVectorizer
# Modify dictionary2 to be compatible with CountVectorizer
dictionary2_cv = [' '.join(tup) for tup in dictionary2]
# Initialize and train CountVectorizer
cv2 = CountVectorizer(ngram_range=(2, 2))
cv2.fit_transform(dictionary2_cv)
for row in range(start,end+1):
report_name = fund_reports_table.loc[row, "report_names"]
raw_report = open("F:/EDGAR_ShareholderReports/" + report_name, 'r', encoding="utf8").read()
## word for word
temp = cv1.fit_transform([raw_report]).toarray()
res1 = np.concatenate((res1,temp),axis=0)
## big grams
bigram=set()
sentences = raw_report.split(".")
for line in sentences:
token = nltk.word_tokenize(line)
bigram = bigram.union(set(list(ngrams(token, 2))) )
# Modify bigram to be compatible with CountVectorizer
bigram = [' '.join(tup) for tup in bigram]
# Note you must not fit_transform here - only transform using the trained cv2
temp = cv2.transform(list(bigram)).toarray()
res2=np.concatenate((res2,temp),axis=0)
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。