赞
踩
Q-learning:基于值函数的强化学习算法,通过学习最优策略来最大化累积奖励。
SARSA:基于值函数的强化学习算法,与Q-learning类似,但是它采用了一种更加保守的策略,即在当前状态下采取的动作。
DQN:深度强化学习算法,使用神经网络来估计值函数,通过反向传播算法来更新网络参数。
A3C:异步优势演员-评论家算法,结合了演员-评论家算法和异步更新的思想,可以在多个并发环境中学习。
TRPO:相对策略优化算法,通过限制策略更新的步长来保证策略的稳定性。
PPO:近似策略优化算法,通过使用一种近似的目标函数来更新策略,可以在保证稳定性的同时提高学习效率。
SAC:软策略优化算法,通过最大化熵来鼓励探索,可以在复杂环境中学习更加鲁棒的策略。
Q-learning是一种基于值函数的强化学习算法,它通过学习最优策略来最大化累积奖励。其核心思想是使用一个Q表来存储每个状态下每个动作的Q值,然后根据Q表来选择动作。Q-learning的更新公式如下:
Q ( s , a ) ← Q ( s , a ) + α ( r + γ max a ′ Q ( s ′ , a ′ ) − Q ( s , a ) ) Q(s,a) \leftarrow Q(s,a) + \alpha(r + \gamma \max_{a'} Q(s',a') - Q(s,a)) Q(s,a)←Q(s,a)+α(r+γa′maxQ(s′,a′)−Q(s,a))
其中, s s s表示当前状态, a a a表示当前动作, r r r表示当前奖励, s ′ s' s′表示下一个状态, a ′ a' a′表示下一个动作, α \alpha α表示学习率, γ \gamma γ表示折扣因子。
下面是一个简单的Q-learning的Python代码示例:
import numpy as np # 定义Q表 Q = np.zeros((num_states, num_actions)) # 定义超参数 alpha = 0.1 gamma = 0.9 epsilon = 0.1 # 定义训练过程 for episode in range(num_episodes): state = env.reset() done = False while not done: # 选择动作 if np.random.uniform() < epsilon: action = env.action_space.sample() else: action = np.argmax(Q[state]) # 执行动作 next_state, reward, done, _ = env.step(action) # 更新Q表 Q[state, action] += alpha * (reward + gamma * np.max(Q[next_state]) - Q[state, action]) state = next_state
SARSA是一种基于状态-动作-回报-下一个状态-下一个动作的强化学习算法。它的全称是State-Action-Reward-State-Action,即状态-动作-回报-下一个状态-下一个动作。SARSA算法的核心思想是在当前状态下,选择一个动作,执行该动作后进入下一个状态,然后再根据下一个状态选择下一个动作,以此类推,直到达到目标状态或者达到最大迭代次数。
SARSA算法的伪代码如下:
下面是一个简单的SARSA算法的python代码示例:
import numpy as np # 定义状态空间和动作空间 states = [0, 1, 2, 3, 4, 5] actions = [0, 1] # 定义Q表 Q = np.zeros((len(states), len(actions))) # 定义参数 alpha = 0.1 # 学习率 gamma = 0.9 # 折扣因子 epsilon = 0.1 # 探索率 # 定义环境 def env(state, action): if state == 0 and action == 0: return 0, 0 elif state == 5 and action == 1: return 1, 0 else: if action == 0: return state - 1, 0 else: return state + 1, 0 # 定义策略 def policy(state): if np.random.uniform() < epsilon: return np.random.choice(actions) else: return np.argmax(Q[state, :]) # SARSA算法 for i in range(1000): state = np.random.choice(states) action = policy(state) while True: next_state, reward = env(state, action) next_action = policy(next_state) Q[state, action] = Q[state, action] + alpha * (reward + gamma * Q[next_state, next_action] - Q[state, action]) state = next_state action = next_action if state == 0 or state == 5: break # 输出Q表 print(Q)
在这个示例中,我们定义了一个简单的环境,它包含6个状态和2个动作。我们使用Q表来存储每个状态-动作对的值,并使用SARSA算法来更新Q表。在每个迭代中,我们随机选择一个初始状态,并使用策略来选择一个动作。然后,我们执行该动作并观察回报和下一个状态。接下来,我们使用策略来选择下一个动作,并使用SARSA算法来更新Q表。最后,我们重复这个过程,直到达到目标状态或者达到最大迭代次数。最终,我们输出Q表,它包含了每个状态-动作对的值。
DQN(Deep Q-Network)是一种基于深度学习的强化学习算法,它通过使用神经网络来估计Q值函数,从而实现对环境的学习和决策。
DQN的核心思想是使用神经网络来逼近Q值函数,将状态作为输入,输出每个动作的Q值。在训练过程中,DQN使用经验回放和目标网络来提高学习效率和稳定性。
具体来说,DQN的训练过程如下:
下面是一个简单的DQN实现的Python代码示例:
import gym import random import numpy as np from collections import deque from keras.models import Sequential from keras.layers import Dense from keras.optimizers import Adam class DQNAgent: def __init__(self, state_size, action_size): self.state_size = state_size self.action_size = action_size self.memory = deque(maxlen=2000) self.gamma = 0.95 self.epsilon = 1.0 self.epsilon_min = 0.01 self.epsilon_decay = 0.995 self.learning_rate = 0.001 self.model = self._build_model() self.target_model = self._build_model() def _build_model(self): model = Sequential() model.add(Dense(24, input_dim=self.state_size, activation='relu')) model.add(Dense(24, activation='relu')) model.add(Dense(self.action_size, activation='linear')) model.compile(loss='mse', optimizer=Adam(lr=self.learning_rate)) return model def remember(self, state, action, reward, next_state, done): self.memory.append((state, action, reward, next_state, done)) def act(self, state): if np.random.rand() <= self.epsilon: return random.randrange(self.action_size) act_values = self.model.predict(state) return np.argmax(act_values[0]) def replay(self, batch_size): minibatch = random.sample(self.memory, batch_size) for state, action, reward, next_state, done in minibatch: target = reward if not done: target = (reward + self.gamma * np.amax(self.target_model.predict(next_state)[0])) target_f = self.model.predict(state) target_f[0][action] = target self.model.fit(state, target_f, epochs=1, verbose=0) if self.epsilon > self.epsilon_min: self.epsilon *= self.epsilon_decay def target_train(self): weights = self.model.get_weights() self.target_model.set_weights(weights) def load(self, name): self.model.load_weights(name) def save(self, name): self.model.save_weights(name) if __name__ == "__main__": env = gym.make('CartPole-v0') state_size = env.observation_space.shape[0] action_size = env.action_space.n agent = DQNAgent(state_size, action_size) done = False batch_size = 32 for e in range(EPISODES): state = env.reset() state = np.reshape(state, [1, state_size]) for time in range(500): action = agent.act(state) next_state, reward, done, _ = env.step(action) reward = reward if not done else -10 next_state = np.reshape(next_state, [1, state_size]) agent.remember(state, action, reward, next_state, done) state = next_state if done: agent.target_train() print("episode: {}/{}, score: {}, e: {:.2}" .format(e, EPISODES, time, agent.epsilon)) break if len(agent.memory) > batch_size: agent.replay(batch_size)
在这个示例中,我们使用OpenAI Gym中的CartPole环境来演示DQN的训练过程。我们首先定义了一个DQNAgent类,其中包含了神经网络模型、经验回放缓存、动作选择策略等。在训练过程中,我们使用了经验回放和目标网络来提高学习效率和稳定性。最后,我们使用了Keras来实现神经网络模型的构建和训练。
A3C是一种异步优势演员-评论家算法,结合了演员-评论家算法和异步更新的思想,可以在多个并发环境中学习。其核心思想是使用多个并发的智能体来学习,每个智能体都有自己的演员和评论家,演员用来选择动作,评论家用来评估动作的价值。A3C的更新公式如下:
θ ← θ + α ∇ θ log π ( a ∣ s ; θ ) A ( s , a ; θ v ) \theta \leftarrow \theta + \alpha \nabla_{\theta} \log \pi(a|s;\theta) A(s,a;\theta_v) θ←θ+α∇θlogπ(a∣s;θ)A(s,a;θv)
θ v ← θ v + β ∇ θ v ( A ( s , a ; θ v ) ) 2 \theta_v \leftarrow \theta_v + \beta \nabla_{\theta_v} (A(s,a;\theta_v))^2 θv←θv+β∇θv(A(s,a;θv))2
其中, θ \theta θ表示演员的参数, θ v \theta_v θv表示评论家的参数, α \alpha α表示演员的学习率, β \beta β表示评论家的学习率, π ( a ∣ s ; θ ) \pi(a|s;\theta) π(a∣s;θ)表示演员的策略, A ( s , a ; θ v ) A(s,a;\theta_v) A(s,a;θv)表示评论家的价值函数。
下面是一个简单的A3C的Python代码示例:
import torch import torch.nn as nn import torch.optim as optim import numpy as np import gym import threading # 定义神经网络 class ActorCritic(nn.Module): def __init__(self, num_states, num_actions): super(ActorCritic, self).__init__() self.fc1 = nn.Linear(num_states, 64) self.fc2 = nn.Linear(64, 64) self.actor = nn.Linear(64, num_actions) self.critic = nn.Linear(64, 1) def forward(self, x): x = torch.relu(self.fc1(x)) x = torch.relu(self.fc2(x)) actor = self.actor(x) critic = self.critic(x) return actor, critic # 定义A3C算法 class A3C: def __init__(self, num_states, num_actions, lr_actor, lr_critic, gamma): self.num_states = num_states self.num_actions = num_actions self.lr_actor = lr_actor self.lr_critic = lr_critic self.gamma = gamma self.actor_critic = ActorCritic(num_states, num_actions) self.optimizer_actor = optim.Adam(self.actor_critic.actor.parameters(), lr=lr_actor) self.optimizer_critic = optim.Adam(self.actor_critic.critic.parameters(), lr=lr_critic) def choose_action(self, state): state = torch.FloatTensor(state).unsqueeze(0) actor, _ = self.actor_critic(state) action_probs = torch.softmax(actor, dim=1) action = action_probs.multinomial(num_samples=1).item() return action def learn(self, state, action, reward, next_state, done): state = torch.FloatTensor(state).unsqueeze(0) action = torch.LongTensor([action]) reward = torch.FloatTensor([reward]) next_state = torch.FloatTensor(next_state).unsqueeze(0) _, critic = self.actor_critic(state) _, next_critic = self.actor_critic(next_state) td_error = reward + self.gamma * next_critic * (1 - done) - critic actor, _ = self.actor_critic(state) action_probs = torch.softmax(actor, dim=1) log_prob = torch.log(action_probs.gather(1, action.unsqueeze(1))) actor_loss = -log_prob * td_error.detach() critic_loss = td_error.pow(2) self.optimizer_actor.zero_grad() self.optimizer_critic.zero_grad() actor_loss.backward() critic_loss.backward() self.optimizer_actor.step() self.optimizer_critic.step() # 定义训练过程 def train(env, a3c, num_episodes): for episode in range(num_episodes): state = env.reset() done = False while not done: action = a3c.choose_action(state) next_state, reward, done, _ = env.step(action) a3c.learn(state, action, reward, next_state, done) state = next_state # 定义多线程训练过程 def train_thread(env, a3c, num_episodes): for episode in range(num_episodes): state = env.reset() done = False while not done: action = a3c.choose_action(state) next_state, reward, done, _ = env.step(action) a3c.learn(state, action, reward, next_state, done) state = next_state # 定义主函数 if __name__ == '__main__': env = gym.make('CartPole-v0') num_states = env.observation_space.shape[0] num_actions = env.action_space.n a3c = A3C(num_states, num_actions, lr_actor=0.001, lr_critic=0.001, gamma=0.99) num_episodes = 1000 num_threads = 4 threads = [] for i in range(num_threads): t = threading.Thread(target=train_thread, args=(env, a3c, num_episodes // num_threads)) threads.append(t) for t in threads: t.start() for t in threads: t.join() env.close()
TRPO是一种相对策略优化算法,通过限制策略更新的步长来保证策略的稳定性。其核心思想是使用一个相对策略优化的目标函数来更新策略,然后使用共轭梯度法来求解更新方向。TRPO的更新公式如下:
θ k + 1 = θ k + α Δ θ \theta_{k+1} = \theta_k + \alpha \Delta \theta θk+1=θk+αΔθ
Δ θ = arg max Δ θ L ( θ k + Δ θ ) \Delta \theta = \arg\max_{\Delta \theta} L(\theta_k + \Delta \theta) Δθ=argΔθmaxL(θk+Δθ)
s . t . D K L ( π θ k ∣ ∣ π θ k + Δ θ ) ≤ δ s.t. \quad D_{KL}(\pi_{\theta_k} || \pi_{\theta_k + \Delta \theta}) \leq \delta s.t.DKL(πθk∣∣πθk+Δθ)≤δ
其中, θ \theta θ表示策略的参数, α \alpha α表示学习率, Δ θ \Delta \theta Δθ表示更新方向, L ( θ ) L(\theta) L(θ)表示相对策略优化的目标
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。