当前位置:   article > 正文

快速排序详解(图解实例)_详细介绍快速排序

详细介绍快速排序
快速排序(Quicksort)是对冒泡排序的一种改进。
它的基本思想是:通过一趟排序将要排序的数据
分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法
对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。
  • 1
  • 2
  • 3
  • 4

算法介绍

设要排序的数组是A[0]……A[N-1],首先任意选取一个数据(通常选用数组的第一个数)作为关键数据,然后将所有比它小的数都放到它左边,所有比它大的数都放到它右边,这个过程称为一趟快速排序。值得注意的是,快速排序不是一种稳定的排序算法,也就是说,多个相同的值的相对位置也许会在算法结束时产生变动。
一趟快速排序的算法是:

  1. 设置两个变量i、j,排序开始的时候:i=0,j=N-1;
  2. 以第一个数组元素作为关键数据,赋值给key,即key=A[0];
  3. 从j开始向前搜索,即由后开始向前搜索(j–),找到第一个小于key的值A[j],将A[j]和A[i]的值交换;
  4. 从i开始向后搜索,即由前开始向后搜索(i++),找到第一个大于key的A[i],将A[i]和A[j]的值交换;
  5. 重复第3、4步,直到i=j;(3,4步中,没找到符合条件的值,即3中A[j]不小于key,4中A[i]不大于key的时候改变j、i的值,使得j=j-1,i=i+1,直至找到为止。找到符合条件的值,进行交换的时候i, j指针位置不变。另外,i==j这一过程一定正好是i+或j-完成的时候,此时令循环结束)。

排序演示

假设用户输入了如下数组:

在这里插入图片描述

此时创建变量i=0(指向第一个数据的下标), j=5(指向最后一个数据的下标), k=6(赋值为第一个数据的值)。
我们要把所有比k小的数移动到k的左面,所以我们可以开始寻找比6小的数,从j开始,从右往左找,不断递减变量j的值,我们找到第一个下标3的数据比6小,于是把数据3移到下标0的位置,把下标0的数据6移到下标3,完成第一次比较:

在这里插入图片描述
此时i=0 j=3 k=6

接着,开始第二次比较,这次要变成找比k大的了,而且要从前往后找了。递加变量i,发现下标2的数据是第一个比k大的,于是用下标2的数据7和j指向的下标3的数据的6做交换,数据状态变成下表:

在这里插入图片描述

此时i=2 j=2 k=6

我们称上面两次比较为一个循环
接着,再递减变量j,不断重复进行上面的循环比较。

在本例中,我们进行一次循环,就发现i和j“碰头”了:他们都指向了下标2。于是,第一遍比较结束。得到结果如下,凡是k(=6)左边的数都比它小,凡是k右边的数都比它大:
如果i和j没有碰头的话,就递加i找大的,还没有,就再递减j找小的,如此反复,不断循环。注意判断和寻找是同时进行的。
然后,对k两边的数据,再分组分别进行上述的过程,直到不能再分组为止。
注意:第一遍快速排序不会直接得到最终结果,只会把比k大和比k小的数分到k的两边。为了得到最后结果,需要再次对下标2两边的数组分别执行此步骤,然后再分解数组,直到数组不能再分解为止(只有一个数据),才能得到正确结果。

至此在分别对6左右两边快速排序
在这里插入图片描述
快速排序算法效率与稳定性分析

当基数值不能很好地分割数组,即基准值将数组分成一个子数组中有一个记录,而另一个子组组有 n -1 个记录时,下一次的子数组只比原来数组小 1,这是快速排序的最差的情况。如果这种情况发生在每次划分过程中,那么快速排序就退化成了冒泡排序,其时间复杂度为O(n2)。

如果基准值都能讲数组分成相等的两部分,则出现快速排序的最佳情况。在这种情况下,我们还要对每个大小约为 n/2 的两个子数组进行排序。在一个大小为 n 的记录中确定一个记录的位置所需要的时间为O(n)。若T(n)为对n个记录进行排序所需要的时间,则每当一个记录得到其正确位置,整组大致分成两个相等的两部分时,我们得到快速排序算法的最佳时间复杂性。
  快速排序在进行交换时,只是根据比较基数值判断是否交换,且不是相邻元素来交换,在交换过程中可能改变相同元素的顺序,因此是一种不稳定的排序算法。

代码实现

public static void main(String[] args) {
        //任意定义一个数组
        int [] array={4,8,8,9,7,27,15,56,5};
        QuickSort(array,0,array.length-1);
        for(int i=0;i<array.length;i++)
        {
            System.out.print(array[i]+" ");
        }
    }
public static void QuickSort(int [] array,int start,int end)
{

    int low=start;
    int high=end;
    int key=array[low];
    while(low<high)
    {
        while(low<high&&array[high]>=key)
            high--;//当end结点值大于基准值时,向前移动,直到找到小于基准值的值
        if(low<high)
        {
            array[low]=array[high];
            low++;
        }
        while(low<high&&array[low]<=key)
            low++;
        if(low<high)
        {
            array[high]=array[low];
            high--;
        }
    }
    array[low]=key;//此时start和end 已经指向同一元素
    if(low-1>start)QuickSort(array,start,low-1);
    if(high+1<end)QuickSort(array,high+1,end);
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36

在这里插入图片描述

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小小林熬夜学编程/article/detail/435267
推荐阅读
相关标签
  

闽ICP备14008679号