赞
踩
题目pdf下载:第十四届蓝桥杯省赛pdf下载
目录
题意:找出指定时间内,年数是月数和天数的倍数,也就是年%月==0 && 年%日==0
思路:模拟,我的答案是:35813063
就是用for来枚举天数,蓝桥杯挺经常出这个的
代码:
- import java.util.*;
- public class Main {
- static int pre[]={0,31,28,31,30,31,30,31,31,30,31,30,31};
- public static void main(String[] args) {
- int sum=0;
- //i是年,j是月,k是日
- for(int i=2000;i<=2000000;i++){
- for(int j=1;j<=12;j++){
- int r=pre[j];
- if(j==2 && (i%400==0 || (i%100!=0 && i%4==0))) r++;
- //2月的闰年是29天
- for(int k=1;k<=r;k++){
- if(i%j==0 && i%k==0) sum++;
- if(i==2000000) { //2000000年1月1号过后,直接跳出
- i=2000001;
- j=13;
- break;
- }
- }
- }
- }
- System.out.println(sum);
- }
- }
题意:5个数从上往下,相邻的两个两两计算,运算符是&,或|,或^。已知这5个数,求多少种运算符情况可以最后答案是1
思路:dfs搜索,我的答案是:30528
dfs枚举所有运算符的排列情况,就是pow(3,10)=59049种,然后把这5个数从上往下计算,要是最后结果为1答案数+1。
代码(c++写的):
- #include <bits/stdc++.h>
- using namespace std;
- int sum=0;
- int a[100005];
- int dp[10][10];
- int mp[10][10];
- void dfs(int d){
- if(d==11){
- for(int i=1;i<=4;i++) mp[1][i]=a[i];
- for(int i=1;i<=3;i++) mp[2][i]=a[i+4];
- for(int i=1;i<=2;i++) mp[3][i]=a[i+7];
- for(int i=1;i<=1;i++) mp[4][i]=a[10];
- for(int i=1;i<=4;i++){
- for(int j=1;j<=4-i+1;j++){
- if(mp[i][j]==0) dp[i][j]=dp[i-1][j]|dp[i-1][j+1];
- if(mp[i][j]==1) dp[i][j]=dp[i-1][j]^dp[i-1][j+1];
- if(mp[i][j]==2) dp[i][j]=dp[i-1][j]&dp[i-1][j+1];
- }
- }
- if(dp[4][1]==1)
- sum++;
- return;
- }
- a[d]=0;
- dfs(d+1);
- a[d]=1;
- dfs(d+1);
- a[d]=2;
- dfs(d+1);
- }
- int main()
- {
- dp[0][1]=1;
- dp[0][2]=0;
- dp[0][3]=1;
- dp[0][4]=0;
- dp[0][5]=1;
- dfs(1);
- cout<<sum<<endl;
- return 0;
- }
题意:给若干个数(范围是0-9),和他们的更改的花费,求最小花费,使得0-9最终数量相同
思路:贪心
只将数量>n/10的数改为其他数,也就是数量>n/10要改掉 (数量-n/10)个。当然是找其中最小的改
通过:思路的时间复杂度可以100%,具体通过看情况
代码:
- import java.util.*;
- public class Main{
- public static void main(String[] args){
- Scanner cin =new Scanner(System.in);
- int n=cin.nextInt();
- int A[][]=new int[11][100005];
- int len[]=new int[15];
- for(int i=1;i<=n;i++) {
- int x=cin.nextInt();
- int y=cin.nextInt();
- A[x][++len[x]]=y;
- }
- for(int i=0;i<10;i++)
- Arrays.sort(A[i],1,len[i]+1); //排序,不用list是因为没有板子,手敲不出来
- long sum=0;
- for(int i=0;i<10;i++) {
- for(int j=1;j<=len[i]-n/10;j++) {
- sum+=A[i][j];
- }
-
- }
- System.out.println(sum);
- }
- }
题意:一个n*m的棋盘,开始全是白子,选择一个矩形全部反转,最后的棋盘情况打印一下
思路:差分前缀和
就是将这个矩形全部数+1(刚开始全是0),最后%2就是答案
因为最大数据也只是2000,每次在将要改变的行中,差分修改。总执行次数也不过是2000*2000。
最后逐行前缀和,打印这些数%2,注意打印时没有空格
通过:思路的时间复杂度可以100%,具体通过看情况
代码:
- import java.util.*;
- public class Main{
- public static void main(String[] args){
- Scanner cin =new Scanner(System.in);
- int n=cin.nextInt();
- int m=cin.nextInt();
- int A[][]=new int[2005][2005];
- for(int i=1;i<=m;i++) {
- int x1=cin.nextInt();
- int y1=cin.nextInt();
- int x2=cin.nextInt();
- int y2=cin.nextInt();
- for(int j=x1;j<=x2;j++) {
- A[j][y1]++; //差分
- A[j][y2+1]--;
- }
- }
- for(int i=1;i<=n;i++) {
- for(int j=1;j<=n;j++) {
- A[i][j]+=A[i][j-1]; //前缀和
- System.out.print(A[i][j]%2);
- }
- System.out.println();
- }
- }
- }
题意:1-pow(a,b)中有多少个数,和pow(a,b)互质
思路:思维+gcd+快速幂
答案就是pow(a,b-1)*r,r是1-a中和a互质的数量
和a*a*a*a....互质,就是和a互质的数。
a,b互质就是gcd(a,b)==1。而(a,b)和(a,b+a),和(a,b+a*2)...的互质情况是一样的,求gcd()那个公式应该能看出来
也就是有循环,只看1-a就行。而r就是欧拉函数
通过:
欧拉函数求可以100%
100%代码:
- import java.util.*;
- public class Main{
- static long mod=998244353;
- static long Euler(long n){ //求欧拉函数值
- long res=n;
- for(long i=2;i*i<=n;++i){
- if(n%i==0){
- res=res/i*(i-1);
- while(n%i==0)
- n/=i;
- }
- }
- if(n>1)
- res-=res/n;
- return res;
- }
- static long qpow(long a,long b){
- long ans=1;
- while(b!=0){
- if(b%2==1)
- ans=ans*a%mod;
- a=a*a%mod;
- b/=2;
- }
- return ans;
- }
- public static void main(String[] args){
- Scanner cin =new Scanner(System.in);
- long a=cin.nextLong();
- long b=cin.nextLong();
- long r=Euler(a); //1-a中有多少个数和a互质
- System.out.println(qpow(a,b-1)*(r%mod)%mod);
- }
- }
题意:
思路:这题没有比较好的思路。
只有用乘法求余公式,暴力计算最大的m。
ans=1,2,6,24,120...。计算这些阶乘的和是否是能被ans其整除,也就是判断:
A[1]!%ans+A[2]!%ans+....+A[n]!%ans==0
要是不行的话,就输出当前ans对应的阶乘数。
通过:
可以看到方法不一定能过前40%,但是大多情况下,也有可能过些
代码:
- import java.util.*;
- public class Main{
- public static void main(String[] args){
- Scanner cin =new Scanner(System.in);
- int n=cin.nextInt();
- int a[]=new int[n+10];
- for(int i=1;i<=n;i++) {
- a[i]=cin.nextInt();
- }
- long ans=1,p=1;
- while(true) {
- long sum=0;
- for(int i=1;i<=n;i++) {
- long res=1;
- for(int j=2;j<=a[i];j++) {
- res=res*j%ans;
- }
- sum=(sum+res)%ans; //算和
- }
- if(sum==0) {
- ans*=(++p);
- }else {
- break;
- }
- }
- System.out.println(p-1);
- }
- }
思路:思维+优先队列
把前面的所有能买的单价和其数量记录下来,然后一旦没有油就从中去除最小的价格。
100%的思路应该是优先队列,存储长度为2的list,每次弹出最小价格,并修改其数量。一旦为0就不再压入。
根据评论,因为油箱有m的上限,所以这个思路不完全正确,具体我也想不到完全正确的思路了
通过:
优先队列,存储长度为2的list可以100%。
代码(优先队列按数量存60%):
- import java.util.*;
- public class Main{
- public static void main(String[] args){
- Scanner cin =new Scanner(System.in);
- PriorityQueue q=new PriorityQueue();
- int n=cin.nextInt();
- int m=cin.nextInt();
- long sum=0;
- for(int i=1;i<=n;i++) {
- int x=cin.nextInt();
- int y=cin.nextInt();
- int z=cin.nextInt();
- m-=x;
- while(m<0) {
- if(q.isEmpty()) {
- sum=-1;
- i=n+1;
- break;
- }
- int r=(int)q.poll();
- sum+=r;
- m++;
- }
- for(int j=1;j<=z;j++) {
- q.add(y);
- }
- }
- System.out.println(sum);
- }
- }
代码(优先队列按序列存100%):
- import java.lang.reflect.Array;
- import java.util.*;
- public class Main{
- static ArrayList fun(int x,int y){
- ArrayList<Integer> t=new ArrayList();
- t.add(x);
- t.add(y);
- return t;
- }
- public static void main(String[] args){
- Scanner cin =new Scanner(System.in);
- PriorityQueue<ArrayList<Integer>> q=new PriorityQueue<>(new Comparator<ArrayList<Integer>>(){
- @Override
- public int compare(ArrayList<Integer> a, ArrayList<Integer> b){
- return a.get(0)-b.get(0);
- }
- });
- int n=cin.nextInt();
- int m=cin.nextInt();
- long sum=0;
- for(int i=1;i<=n;i++) {
- int x=cin.nextInt();
- int y=cin.nextInt();
- int z=cin.nextInt();
- m-=x;
- while(m<0) {
- if(q.isEmpty()) {
- sum=-1;
- i=n+1;
- break;
- }
- List<Integer> r=q.poll(); //前面价格最小的
- int res=Math.min(r.get(1),-m); //这次使用r的数量
- sum+=(long)res*r.get(0);
- m+=res;
- if(res!=r.get(1)) //要是还有剩余,将剩余数量再加入q中
- q.add(fun(r.get(0),r.get(1)-res));
- }
- q.add(fun(y,z));
- }
- System.out.println(sum);
- }
- }
题意:给若干个线段,和一个光源。判断有多少个线段可以被光源找到
思路:计算几何
100%的思路没有,只有30%的,也就是双for判断有没有被其他挡到
显示判断可能被挡的,高度至少是被挡<档<光源 or 被挡>档>光源 才有可能会挡到
接下来是被挡线段的两个端点,连接光源后不能与挡的线段相交
方法是叉积求两个线段不相交,要在两点同一侧才不相交
通过:
该思路时间复杂度可以30%,再优的应该是极角排序了
核心代码:
- static double add(Node a,Node x,Node y) { //叉积
- return (a.x-x.x)*(a.y-y.y)-(a.y-x.y)*(a.x-y.x);
- }
- static boolean solve(int i,int j) {
- //只有高度合适的时候,i才有可能被j挡到
- if((b[i]<=b[j] && b[j]<=y) || (y<=b[j] && b[j]<=b[i])) {
- double h1 = add(new Node(a[j], b[j]), new Node(a[i], b[i]), new Node(x, y));
- double h2 = add(new Node(a[j] + l[j], b[j]), new Node(a[i], b[i]), new Node(x, y));
- if ((h1 * h2) < 0) return true;
- h1 = add(new Node(a[j], b[j]), new Node(a[i] + l[i], b[i]), new Node(x, y));
- h2 = add(new Node(a[j] + l[j], b[j]), new Node(a[i] + l[i], b[i]), new Node(x, y));
- if ((h1 * h2) < 0) return true;
- }
- return false;
- }
代码:
- import java.util.*;
- public class Main{
- static int n,x,y;
- static int a[]=new int[1000000],b[]=new int[1000000],l[]=new int[1000000];
- static double add(Node a,Node x,Node y) { //叉积
- return (a.x-x.x)*(a.y-y.y)-(a.y-x.y)*(a.x-y.x);
- }
- static boolean solve(int i,int j) {
- if((b[i]<=b[j] && b[j]<=y) || (y<=b[j] && b[j]<=b[i])) {
- double h1 = add(new Node(a[j], b[j]), new Node(a[i], b[i]), new Node(x, y));
- double h2 = add(new Node(a[j] + l[j], b[j]), new Node(a[i], b[i]), new Node(x, y));
- if ((h1 * h2) < 0) return true;
- h1 = add(new Node(a[j], b[j]), new Node(a[i] + l[i], b[i]), new Node(x, y));
- h2 = add(new Node(a[j] + l[j], b[j]), new Node(a[i] + l[i], b[i]), new Node(x, y));
- if ((h1 * h2) < 0) return true;
- }
- return false;
- }
- public static void main(String[] args){
- Scanner cin =new Scanner(System.in);
- n=cin.nextInt();
- x=cin.nextInt();
- y=cin.nextInt();
- for(int i=1;i<=n;i++) {
- a[i]=cin.nextInt();
- b[i]=cin.nextInt();
- l[i]=cin.nextInt();
- }
- int sum=0;
- for(int i=1;i<=n;i++) {
- for(int j=1;j<=n;j++) {
- if(i!=j && solve(i,j)) {
- break;
- }
- if(j==n) sum++;
- }
- }
- System.out.println(sum);
- }
- }
- class Node{
- public double x,y;
- public Node(){}
- public Node(double a,double b){
- this.x=a;
- this.y=b;
- }
- }
样例算不出来,什么都没有
通过:0%
题意:
思路:前缀和+回文字串判断
这种题思路感觉细究下就会错
我的思路:反异或操作后,字串只能是以0为中心的奇数长度回文串,或者是偶数长度的任意回文串。只有一次这个操作,且其他都是在两边添加0和1,那么这个回文字串一定还在给的字符串中
所以在其中找回文子串,我用的中心扩展法。用1的数量=左端点的左边1的数量+右端点的右边1的数量+回文字串中的1数量/2
也就是O(n的平方)求出所有情况的最小1的数量
通过:
时间复杂度是O(n的平方),也就是60%。
O(n)或者O(nlogn)求回文子串(不是最长)不知道有没有方法。当然是建立在这个思路正确的前提下
代码:
- import java.util.*;
- public class Main{
- static String s;
- static int f[]=new int[1000000];
- static int n,mi=10000000;
- static int get(int x,int y){ //前缀和
- if(y<1 || x>n || x>y) return 0;
- return f[y]-f[x-1];
- }
- static void solve(int l,int r){
- while(l-1!=0 && r+1!=n+1 && s.charAt(l-1)==s.charAt(r+1)){
- l--;
- r++;
- }
- mi=Math.min(mi,get(l,r)/2+get(1,l-1)+get(r+1,n));
- }
- public static void main(String[] args){
- Scanner cin =new Scanner(System.in);
- s=cin.next();
- n=s.length();
- s=" "+s;
- for(int i=1;i<=n;i++){
- f[i]+=f[i-1]+(s.charAt(i)=='1'?1:0);
- }
- for(int i=1;i<=n;i++){
- if(s.charAt(i)=='0')
- solve(i,i);
- if(i!=n && s.charAt(i)==s.charAt(i+1))
- solve(i,i+1);
- }
- System.out.println(mi);
- }
- }
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。