赞
踩
固定窗口就像是滑动窗口的一个特例,固定窗口是大小固定且不能随着时间而变化的。
滑动时间窗口就是把一段时间片分为多个样本窗口,可以通过更细粒度对数据进行统计。然后计算对应的时间落在那个窗口上,来对数据统计;滑动时间窗口,随着时间流失,最开始的样本窗口将会失效,同时会生成新的样本窗口。
例如 我们将1s划分为4个样本窗口,每个样本窗口对应250ms。
Bucket用于记录每个样本窗口的值
- // Bucket defines the bucket that holds sum and num of additions.
- type Bucket struct {
- Sum float64 //样本窗口的值
- Count int64 //样本窗口被add的次数
- }
-
- func (b *Bucket) add(v float64) {
- b.Sum += v
- b.Count++
- }
-
- //重置样本窗口,样本窗口过期时
- func (b *Bucket) reset() {
- b.Sum = 0
- b.Count = 0
- }
-
- type window struct {
- buckets []*Bucket //样本窗口
- size int //样本窗口个数
- }
-
- func newWindow(size int) *window {
- buckets := make([]*Bucket, size)
- for i := 0; i < size; i++ {
- buckets[i] = new(Bucket)
- }
- return &window{
- buckets: buckets,
- size: size,
- }
- }
-
-
- func (w *window) add(offset int, v float64) {
- w.buckets[offset%w.size].add(v)
- }
-
- func (w *window) reduce(start, count int, fn func(b *Bucket)) {
- for i := 0; i < count; i++ {
- fn(w.buckets[(start+i)%w.size])
- }
- }
-
- func (w *window) resetBucket(offset int) {
- w.buckets[offset%w.size].reset()
- }
bucket和window的实现都很简单,逻辑很好理解。
RollingWindow相对复杂一些。
当add值时需要如下操作:
-
- type (
- // RollingWindowOption let callers customize the RollingWindow.
- RollingWindowOption func(rollingWindow *RollingWindow)
-
- // RollingWindow defines a rolling window to calculate the events in buckets with time interval.
- RollingWindow struct {
- lock sync.RWMutex
- size int
- win *window
- interval time.Duration
- offset int
- ignoreCurrent bool
- lastTime time.Duration // start time of the last bucket
- }
- )
-
- // NewRollingWindow returns a RollingWindow that with size buckets and time interval,
- // use opts to customize the RollingWindow.
- func NewRollingWindow(size int, interval time.Duration, opts ...RollingWindowOption) *RollingWindow {
- if size < 1 {
- panic("size must be greater than 0")
- }
-
- w := &RollingWindow{
- size: size,
- win: newWindow(size),
- interval: interval,
- lastTime: timex.Now(),
- }
- for _, opt := range opts {
- opt(w)
- }
- return w
- }
-
- // Add adds value to current bucket.
- func (rw *RollingWindow) Add(v float64) {
- rw.lock.Lock()
- defer rw.lock.Unlock()
- rw.updateOffset()
- rw.win.add(rw.offset, v)
- }
-
- // Reduce runs fn on all buckets, ignore current bucket if ignoreCurrent was set.
- func (rw *RollingWindow) Reduce(fn func(b *Bucket)) {
- rw.lock.RLock()
- defer rw.lock.RUnlock()
-
- var diff int
- //获取跨度,并计算还有几个bucket还在窗口期内
- span := rw.span()
- // ignore current bucket, because of partial data
- if span == 0 && rw.ignoreCurrent {
- diff = rw.size - 1
- } else {
- diff = rw.size - span
- }
- if diff > 0 {
- offset := (rw.offset + span + 1) % rw.size
- rw.win.reduce(offset, diff, fn)
- }
- }
-
- //距离上次add操作跨度,
- //例如 lastTime = 1s, 当前时间1777ms。样本窗口时间250ms,那么跨度为3个样本窗口
- func (rw *RollingWindow) span() int {
- offset := int(timex.Since(rw.lastTime) / rw.interval)
- if 0 <= offset && offset < rw.size {
- return offset
- }
-
- return rw.size
- }
-
- //g
- func (rw *RollingWindow) updateOffset() {
- span := rw.span()
- if span <= 0 {
- return
- }
-
- offset := rw.offset
- // reset expired buckets ,重置已经超时的bucket
- for i := 0; i < span; i++ {
- rw.win.resetBucket((offset + i + 1) % rw.size)
- }
-
- rw.offset = (offset + span) % rw.size
- now := timex.Now()
- //和样本窗口时间对齐
- rw.lastTime = now - (now-rw.lastTime)%rw.interval
- }
- //1.新建一个4样本窗口,每个样本窗口250ms
- rollingWindow:= NewRollingWindow(4, time.Millisecond*250,IgnoreCurrentBucket())
-
- //2.add
- rollingWindow.Add(1)
- rollingWindow.Add(2)
- time.Sleep(time.Millisecond*250)
-
- rollingWindow.Add(3)
- rollingWindow.Add(4)
-
-
- //3.获取滑动窗口的值
-
- var Sum float64
- var total int64
- rollingWindow.Reduce(func(b *collection.Bucket) {
- Sum += int64(b.Sum)
- total += b.Count
- })
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。