赞
踩
数据仓库是一个面向主题、集成的、非易失的且随时间变化的数据集合。它主要用于组织、积累历史数据,并使用分析方法(如OLAP、数据分析)进行分析整理,以辅助决策,为管理者、企业系统提供数据支持、构建商业智能。
数据仓库的特点包括面向主题性、集成性、非易失性和时变性。
数仓建模的目标是在性能、成本、效率和数据质量之间找到最佳平衡点。具体来说,建模应达到以下效果:
关系模型(ER建模):从全企业的高度设计一个3NF(第三范式)模型的方法。它用实体加关系描述的数据模型来描述企业业务架构,在范式理论上符合3NF。这种方法是站在企业角度进行面向主题的抽象,而不是针对某个具体业务流程。
维度模型:以维度建模为基础,根据业务域和数据域设计主题模型,构建一致性的维度和事实。维度模型包括星形模型和雪花模型。
数据库的设计三范式(Normalization)是关系型数据库设计的一种标准化过程,其主要目的是消除冗余数据,提高数据存储的效率和数据查询的性能。
数据库的三范式是一种设计规范用于规范化关系型数据库中的数据结构以提高数据的一致性和减少数据冗余。通过遵循三范式可以有效地设计和组织数据库使数据库结构更加合理灵活和易于维护。但请注意过度追求范式化可能会导致性能问题因此在实际应用中需要根据具体情况进行权衡和优化。
三范式和数仓建模之间有着紧密的关系。以下是它们之间联系的详细解释:
基础原理相通:
应用领域的差异与联系:
相互影响:
实践中的应用:
三范式和数仓建模在原理和目标上有一定的相通之处,都是为了更好地管理和利用数据。但在具体实践和应用中,它们又各有侧重和适用场景。因此,在设计和构建数据仓库时,需要根据实际情况和需求来选择合适的建模方法。
维度建模中的表类型主要分为两种:事实表和维度表。
事实表是维度建模的核心,它记录了业务过程的具体事实,通常包含业务的度量值。以下是关于事实表的一些关键点:
定义与特点:
类型:
结构:
举例:
假设我们有一个电商数据仓库,其中的一个事实表可以是“销售事实表”。
维度表是维度建模中描述业务环境、产品、客户等文本信息的表。以下是关于维度表的一些关键点:
定义与特点:
作用:
结构:
举例:
继续上述电商数据仓库的例子,我们可以有以下几个维度表:
总的来说,在维度建模中,事实表和维度表是相互关联、相辅相成的。事实表记录业务过程的度量值,而维度表提供这些度量值的上下文信息。通过这种结构,维度建模能够高效地支持复杂的数据分析和报表生成需求。
在实践中,数据仓库的建模过程通常包括抽象出主体、梳理主体之间的关系、梳理主体的属性以及画出E-R关系图等步骤。这些步骤有助于更好地理解业务需求和数据结构,从而构建一个有效的数据仓库模型。
在选择建模方法时,需要考虑具体的业务场景和需求。例如,对于需要快速响应和灵活调整的分析需求,维度模型可能更为适合;而对于需要严格遵循数据规范化和避免数据冗余的场景,关系模型可能更为合适。
维度模型包括星形模型和雪花模型。
定义与结构:
特点:
应用:
定义与结构:
特点:
与星型模型的比较:
应用:
综上所述,星型模型和雪花模型在数据仓库设计中各有优势。星型模型以其简单性和高效的查询性能而受到青睐,而雪花模型则通过更高的数据规范化程度提供了更灵活的数据表示能力。在选择使用哪种模型时,需要根据具体的应用场景和需求进行权衡。
宽表是一种字段比较多的表,通常是指业务主题相关的指标、维度、属性关联在一起的表。宽表的使用有一定的便利性,但也可能导致表结构频繁发生变动。在数仓层(DW),建议选择采用标准的维度建模方式——星型模型,而宽表则可以在某些场景下结合使用。
在数据仓库设计中,宽表和维度模型是两种常见的数据结构。它们各有优缺点,选择哪种结构取决于具体的业务需求和场景。以下是对宽表和维度模型的比较和选择建议:
优点:
缺点:
优点:
缺点:
Kimball架构和Inmon架构是数据仓库设计的两大主流方法论。Kimball架构注重数据的快速展现和业务分析,强调建立多个数据集市;而Inmon架构则更注重数据的整合和一致性,倾向于建立一个集中的数据仓库。这两种架构各有优劣,选择哪种架构取决于企业的具体需求和业务场景。
Kimball架构是一种基于维度建模的数据仓库架构,它以业务过程为中心,强调快速交付和敏捷迭代。
Kimball架构是在20世纪90年代中期由Ralph Kimball等人提出的,具体是在数据集市概念兴起之时,大约在1994~1996年之间。这一时期标志着从企业数据集成时代向更加灵活和分散的数据集市时代的转变。
核心思想:
数据组织:
特点:
应用场景:
Inmon架构是一种更为传统和严谨的数据仓库架构,强调数据的一致性和准确性。
Inmon架构的理念最早由Bill Inmon在其1991年的著作《Building the Data Warehouse》中提出。这本书为数据仓库领域奠定了基础,并定义了数据仓库的基本概念和特性。因此,Inmon架构的提出时间可以追溯到1991年。
核心思想:
数据组织:
特点:
应用场景:
综上所述,Kimball架构和Inmon架构在数据仓库的建设方法、数据组织、特点和应用场景等方面存在差异。Kimball架构注重敏捷开发和业务过程的维度建模,适合快速响应业务需求;而Inmon架构则强调数据的一致性和准确性,适合对数据质量有严格要求的大型企业。
数仓中的数据分层是为了更好地组织、管理和利用数据。
综上所述,数仓中的数据分层有助于将数据从原始状态逐步加工、汇总和应用,以满足不同业务需求和分析场景。每个层次都有其特定的数据特性和用途,共同构成了一个完整、高效的数据仓库体系。
数仓建模的关键步骤可以分为以下几点:
需求分析,确立主题:
技术选型与架构规划:
数据建模:
ETL过程设计(Extract, Transform, Load):
数仓分层设计:
模型优化与验证:
数据应用与可视化:
数仓建模是一个系统性工程,需要综合考虑业务需求、技术选型、数据处理流程、模型设计等多个方面。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。