当前位置:   article > 正文

深度学习 -- Pytorch学习 数据集API Dataset与DataLoader 重载鸢尾花数据集_dataset_dir

dataset_dir

前言

在模型训练的步骤中,数据的部分非常重要,它的过程主要分为数据收集、数据划分、数据读取、数据预处理。

数据收集的有原始样本标签(Img,label)

数据集的划分需要分为训练集、验证集、测试集。
训练集负责训练模型,验证集负责验证模型是否过拟合,测试集是用来测试性能的。

数据读取主要就是DataLoader的内容

  • DataLoader分为两个子模块,分别是Sampler和DataSet
    Sampler的功能是生成索引(Index)
    DataSet则是根据索引来读取数据

数据预处理需要用transforms来实现

自定义数据集类

PyTorch的自定义数据集可使用Dataset类、IterableDataset类来定义,前者用于实现Map-style(映射风格)的数据集,后者用于实现迭代风格的数据集。

DataLoader 和 Dataset

DataLoader 和 Dataset是pytorch数据读取的核心

Dataset

torch.utils.data.Dataset
功能:Dataset抽象类,所有自定义的Dataset需要继承它,并且复写__ getitem __()

getitem:
接收一个索引,返回一个样本

在这里插入图片描述

使用Dataset类重载鸢尾花数据集

import numpy as np
import torch
from torch.utils.data import Dataset
import numpy as np

class IrisDataset(Dataset):
    '''鸢尾花数据集'''
    def __init__(self):
        super(IrisDataset).__init__()
        data = np.loadtxt()("鸢尾花数据集路径.csv",delimiter=',',dtype=np.float32)
        self.x = torch.from_numpy(data[:,0:-1])
        self.y = torch.from_numpy(data[:,[-1]])
        self.len = data.shape[0]
        
    def __getitem__(self, index):
        return self.x[index],self.y[index]
    
    def __len__(self):
        return self.len

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20


DataLoader

torch.utils.data.DataLoader

实现自定义数据集之后,就可以返回数据集样本了,但这种直接通过索引来返回样本的方式比较原始,无法让数据集一次提供一个批次(batch)的数据,也无法对数据进行随机置乱和并行加速。为此,PyTorch专门提供DataLoader类来实现这一功能。

DataLoader类是一个数据加载器,它将数据集和样本抽样器组合在一起,并提供给定数据集上的可迭代对象。

功能:构建可跌倒的数据装载器

在这里插入图片描述

  • dataset:Dataset类,决定数据从哪读取及如何读取
  • batchsize:批大小
  • num_works:是否多进程读取数据
  • shuffle:每个epoch是否乱序
  • drop_last:当样本数不能被batchsize整除时,是否舍弃最后一批数据

Epoch:所有训练样本都一输入到模型中,称之为一个Epoch
Iteration:一批样本输入到模型中,称之为一个Iteration
Batchsize:批大小,决定一个Epoch有多少个Iteration

DataLoader类的简单示例

我们以读取上面构建的鸢尾花数据集为例

import torch
from torch.utils.data import DataLoader
from Dataset类重载鸢尾花数据集 import IrisDataset

# 实例化
iris = IrisDataset()
irir_loader = DataLoader(dataset=iris,batch_size=10,shuffle=True)

for epoch in range(2):
    for i,data in enumerate(irir_loader): # Return an enumerate object.
        # 从irir_loader中读取数据
        inputs,labels = data
        # 打印数据集
        print(inputs.data.size())
        print(labels.data.size())
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15

数据读取的三个问题

1、读哪些数据?

训练用的数据

2、从哪读数据?

数据集中

3、怎么读数据?

通过os库对硬盘上的文件读取

if __name__ == '__main__':
	random.seed(1)

	dataset_dir = ps.path.join('..','data')
	split_dir = ps.path.join('..','split')
	train_dir = os.path.join(split_dir,'train')
	valid_dir = os.path.join(split_dir,'valid')
	test_dir = os.path.join(split_dir,'test')
	
	train_pct = 0.8
	valid_pct = 0.1
	test_pct = 0.1
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12

构建MyDataset实例

train_data = MyDataset(data_dir=train_dir,transform=train_transform)
valid_data = MyDataset(data_dir=train_dir,transform=valid_transform)
  • 1
  • 2

构建DataLoder

train_loader = DataLoader(dataset=train_data,batch_size=tensor(32,32),shuffle=True)
valid_loader = DataLoader(dataset=valid_data,batch_size=tensor(32,32))

  • 1
  • 2
  • 3

在这里插入图片描述

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小小林熬夜学编程/article/detail/482094
推荐阅读
相关标签
  

闽ICP备14008679号