当前位置:   article > 正文

ChuanhuChatGPT集成百川大模型

ChuanhuChatGPT集成百川大模型

搭建步骤:

  1. 拷贝本地模型,把下载好的Baichuan2-7B-Chat拷贝到models目录下
  2. 修改modules\models\base_model.py文件,class ModelType增加Baichuan

    Baichuan = 16

    elif "baichuan" in model_name_lower:

       model_type = ModelType.Baichuan

  3. 修改modules\models\models.py文件,get_model方法增加ModelType.Baichuan

    elif model_type == ModelType.Baichuan:

        from .Baichuan import Baichuan_Client

        model = Baichuan_Client(model_name, user_name=user_name)

  4. 增加modules\models\Baichuan.py文件

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    13

    14

    15

    16

    17

    18

    19

    20

    21

    22

    23

    24

    25

    26

    27

    28

    29

    30

    31

    32

    33

    34

    35

    36

    37

    38

    39

    40

    41

    42

    43

    44

    45

    46

    47

    48

    49

    50

    51

    52

    53

    54

    55

    56

    57

    58

    59

    60

    61

    62

    63

    64

    65

    66

    67

    68

    69

    70

    71

    72

    73

    74

    75

    76

    77

    78

    79

    80

    81

    from modelscope import snapshot_download, AutoModelForCausalLM, AutoTokenizer,GenerationConfig

    from transformers import AutoModelForCausalLM, AutoTokenizer

    from transformers.generation import GenerationConfig

    import logging

    import colorama

    from ..index_func import *

    from ..presets import *

    from ..utils import *

    from .base_model import BaseLLMModel

    from ..presets import MODEL_METADATA

    from datetime import datetime

    class Baichuan_Client(BaseLLMModel):

        def __init__(self, model_name, user_name="") -None:

            super().__init__(model_name=model_name, user=user_name)

            import torch

            from transformers import AutoModel, AutoTokenizer

            global CHATGLM_TOKENIZER, CHATGLM_MODEL

            print("__init__ Baichuan_Client")

            if CHATGLM_TOKENIZER is None or CHATGLM_MODEL is None:

                model_path = None

                if os.path.exists("models"):

                    model_dirs = os.listdir("models")

                    if model_name in model_dirs:

                        model_path = f"models/{model_name}"

                if model_path is not None:

                    model_source = model_path

                else:

                    model_source = snapshot_download(f"baichuan-inc/{model_name}", revision='v1.0.4')

                CHATGLM_TOKENIZER = AutoTokenizer.from_pretrained(

                    model_source, device_map="auto", trust_remote_code=True, torch_dtype=torch.float16

                )

                quantified = False

                if "int4" in model_name:

                    quantified = True

                model = AutoModelForCausalLM.from_pretrained(

                    model_source, device_map="auto", trust_remote_code=True, torch_dtype=torch.float16

                )

                model.generation_config = GenerationConfig.from_pretrained(model_source)

                model = model.eval()

                CHATGLM_MODEL = model

        def _get_glm_style_input(self):

            print("_get_glm_style_input")

            print(f"the history is: {self.history}")

            history = [x["content"for in self.history]

            query = history.pop()

            print(f"the message is: {query}")

            return history, query

        def get_answer_at_once(self):

            print("get_answer_at_once")

            history,query = self._get_glm_style_input()

            messages = []

            messages.append({'role''user''content': query})

            now = datetime.now()

            print("get_answer_at_once start"+"++++++++"+ now.strftime("%Y-%m-%d %H:%M:%S"))

            response = CHATGLM_MODEL.chat(

                CHATGLM_TOKENIZER, messages)

            now = datetime.now()

            print("get_answer_at_once end"+"++++++++"+ now.strftime("%Y-%m-%d %H:%M:%S"))

            print(f"the response is: {response}")

            return response, len(response)

        def get_answer_stream_iter(self):

            history,query = self._get_glm_style_input()

            messages = []

            messages.append({'role''user''content': query})

            result = ""

            now = datetime.now()

            print("get_answer_stream_iter start"+"++++++++"+ now.strftime("%Y-%m-%d %H:%M:%S"))

            for response in CHATGLM_MODEL.chat(

                CHATGLM_TOKENIZER,

                messages

            ):

                print(f"the response is: {response}")

                result += response

                yield result

            now = datetime.now()

            print("get_answer_stream_iter end"+"++++++++"+ now.strftime("%Y-%m-%d %H:%M:%S"))

  5. 答案回调开关控制get_answer_at_once、get_answer_stream_iter方法调用选择
  6. 执行效果
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小小林熬夜学编程/article/detail/500164
推荐阅读
相关标签
  

闽ICP备14008679号