当前位置:   article > 正文

Day17.一刷数据结构算法(C语言版) 654最大二叉树;617合并二叉树;700二叉搜索树中的搜索;98验证二叉搜索树

Day17.一刷数据结构算法(C语言版) 654最大二叉树;617合并二叉树;700二叉搜索树中的搜索;98验证二叉搜索树

        又是破防的一天......


一.654最大二叉树

        又是构造二叉树,昨天大家刚刚做完 中序后序确定二叉树,今天做这个 应该会容易一些, 先看视频,好好体会一下 为什么构造二叉树都是 前序遍历 

        题目链接:最大二叉树

        文章讲解:代码随想录

 1.思路分析

        简单来说,二叉树构建过程如下:

        构造树一般采用的是前序遍历,因为先构造中间节点,然后递归构造左子树和右子树。 

        递归三部曲:

        1)确定递归函数的参数和返回值

        参数传入的是存放元素的数组以及左右边界索引,返回该数组构造的二叉树的头结点,返回类型是指向节点的指针。

struct TreeNode* traversal(int* nums, int left, int right)

         2)确定终止条件

        当左右边界相等或左右颠倒时,返回NULL。

  1. //若左边界大于右边界,返回NULL
  2. if(left >= right)
  3. return NULL;

        3)确定单层递归的逻辑

        第一步:先要找到数组中最大的值和对应的下标, 最大的值构造根节点,下标用来下一步分割数组。

  1. //找出数组中最大数坐标
  2. int maxIndex = left;
  3. int i;
  4. for(i = left + 1; i < right; i++) {
  5. if(nums[i] > nums[maxIndex])
  6. maxIndex = i;
  7. }
  8. //开辟结点
  9. struct TreeNode* node = (struct TreeNode*)malloc(sizeof(struct TreeNode));
  10. //将结点的值设为最大数组数组元素
  11. node->val = nums[maxIndex];

        第二步:最大值所在的下标左区间构造左子树。

node->left = traversal(nums, left, maxIndex);

        第三步:最大值所在的下标右区间构造右子树。

node->right = traversal(nums, maxIndex + 1, right);

2.代码详解

  1. /**
  2. * Definition for a binary tree node.
  3. * struct TreeNode {
  4. * int val;
  5. * struct TreeNode *left;
  6. * struct TreeNode *right;
  7. * };
  8. */
  9. struct TreeNode* traversal(int* nums, int left, int right) {
  10. //若左边界大于右边界,返回NULL
  11. if(left >= right)
  12. return NULL;
  13. //找出数组中最大数坐标
  14. int maxIndex = left;
  15. int i;
  16. for(i = left + 1; i < right; i++) {
  17. if(nums[i] > nums[maxIndex])
  18. maxIndex = i;
  19. }
  20. //开辟结点
  21. struct TreeNode* node = (struct TreeNode*)malloc(sizeof(struct TreeNode));
  22. //将结点的值设为最大数组数组元素
  23. node->val = nums[maxIndex];
  24. //递归定义左孩子结点和右孩子结点
  25. node->left = traversal(nums, left, maxIndex);
  26. node->right = traversal(nums, maxIndex + 1, right);
  27. return node;
  28. }
  29. struct TreeNode* constructMaximumBinaryTree(int* nums, int numsSize){
  30. return traversal(nums, 0, numsSize);
  31. }

 二.617合并二叉树

        这次是一起操作两个二叉树了, 估计大家也没一起操作过两个二叉树,也不知道该如何一起操作,可以看视频先理解一下。 优先掌握递归。

        题目链接:合并二叉树

        文章讲解:代码随想录

 1.思路分析

        其实和遍历一个树逻辑是一样的,只不过传入两个树的节点,同时操作。

        这道题用哪种遍历都可以,本人以前序为例。

        递归三部曲:

        1)确定递归函数的参数和返回值

        首先要合入两个二叉树,那么参数至少是要传入两个二叉树的根节点,返回值就是合并之后二叉树的根节点。 

struct TreeNode* mergeTrees(struct TreeNode* root1, struct TreeNode* root2)

        2)确定终止条件

        因为是传入了两个树,那么就有两个树遍历的节点root1 和 root2,如果root1 == NULL 了,两个树合并就应该是 root2 了(如果root2也为NULL也无所谓,合并之后就是NULL)。

        反过来如果root2 == NULL,那么两个数合并就是root1(如果root1也为NULL也无所谓,合并之后就是NULL)。

        代码如下:

  1. if (root1 == NULL) return root2; // 如果root1为空,合并之后就应该是root2
  2. if (root2 == NULL) return root1; // 如果root2为空,合并之后就应该是root1

         3)确定单层递归的逻辑

        单层递归的逻辑就比较好写了,这里我们重复利用一下root1这个树,root1就是合并之后树的根节点(就是修改了原来树的结构)。

        那么单层递归中,就要把两棵树的元素加到一起。

root->val=root1->val+root2->val;

        接下来root1 的左子树是:合并root1左子树root2左子树之后的左子树。

        root1 的右子树:是 合并 root1右子树 root2右子树之后的右子树。

        最终t1就是合并之后的根节点。

  1. root->left=mergeTrees(root1->left,root2->left);
  2. root->right=mergeTrees(root1->right,root2->right);
  3. return root;

 2.代码详解

  1. /**
  2. * Definition for a binary tree node.
  3. * struct TreeNode {
  4. * int val;
  5. * struct TreeNode *left;
  6. * struct TreeNode *right;
  7. * };
  8. */
  9. struct TreeNode* mergeTrees(struct TreeNode* root1, struct TreeNode* root2) {
  10. if(root1==NULL) return root2;
  11. if(root2==NULL) return root1;
  12. struct TreeNode* root=(struct TreeNode*)malloc(sizeof(struct TreeNode));
  13. root->val=root1->val+root2->val;
  14. root->left=mergeTrees(root1->left,root2->left);
  15. root->right=mergeTrees(root1->right,root2->right);
  16. return root;
  17. }

 三.700二叉搜索树中的搜索

        递归和迭代 都可以掌握以下,因为本题比较简单, 了解一下 二叉搜索树的特性

        题目链接:二叉搜索树中的搜索

        文章讲解: 代码随想录

        视频讲解:不愧是搜索树,这次搜索有方向了!| LeetCode:700.二叉搜索树中的搜索

1.思路分析

        本题,其实就是在二叉搜索树中搜索一个节点。那么我们来看看应该如何遍历。

        递归三部曲:

        1)确定递归函数的参数和返回值

        递归函数的参数传入的就是根节点和要搜索的数值,返回的就是以这个搜索数值所在的节点。

        代码如下:

struct TreeNode* searchBST(struct TreeNode* root, int val)

         2)确定终止条件

        如果root为空,或者找到这个数值了,就返回root节点。

if (root == NULL || root->val == val) return root;

        3) 确定单层递归的逻辑

        看看二叉搜索树的单层递归逻辑有何不同。

        因为二叉搜索树的节点是有序的,所以可以有方向的去搜索。

        如果root->val 大于val,搜索左子树,如果root->val 小于 val,就搜索右子树,最后如果都没有搜索到,就返回NULL。

  1. struct TreeNode* result = NULL;
  2. if (root->val > val) result = searchBST(root->left, val);
  3. if (root->val < val) result = searchBST(root->right, val);
  4. return result;

        很多人写递归函数的时候习惯直接写searchBST(root->right, val),却忘了递归函数还有返回值。

        递归函数的返回值是什么? 是左子树如果搜索到了val,要将该节点返回。 如果不用一个变量将其接住,那么返回值不就没了。

        所以要result = searchBST(root->right, val);并在最后return result

2.代码详解

  1. /**
  2. * Definition for a binary tree node.
  3. * struct TreeNode {
  4. * int val;
  5. * struct TreeNode *left;
  6. * struct TreeNode *right;
  7. * };
  8. */
  9. struct TreeNode* searchBST(struct TreeNode* root, int val) {
  10. if (root == NULL || root->val == val) return root;
  11. struct TreeNode* result = NULL;
  12. if (root->val > val) result = searchBST(root->left, val);
  13. if (root->val < val) result = searchBST(root->right, val);
  14. return result;
  15. }

 四.98验证二叉搜索树

        遇到 搜索树,一定想着中序遍历,这样才能利用上特性。 

        但本题是有陷阱的,可以自己先做一做,然后在看题解,看看自己是不是掉陷阱里了。这样理解的更深刻。

        题目链接:验证二叉搜索树

        文章讲解:代码随想录

        视频讲解:你对二叉搜索树了解的还不够! | LeetCode:98.验证二叉搜索树

 1.思路分析

        要知道中序遍历下,输出的二叉搜索树节点的数值是有序序列。

        有了这个特性,验证二叉搜索树,就相当于变成了判断一个序列是不是递增的了。

        这道题目比较容易陷入两个陷阱:

  • 陷阱1

        不能单纯的比较左节点小于中间节点,右节点大于中间节点就完事了

        我们要比较的是 左子树所有节点小于中间节点,右子树所有节点大于中间节点

        例如: [10,5,15,null,null,6,20] 这个case:

 

        节点10大于左节点5,小于右节点15,但右子树里出现了一个6 这就不符合了! 

  • 陷阱2

        样例中最小节点可能是int的最小值,如果这样使用最小的int来比较也是不行的。

        此时可以初始化比较元素为longlong的最小值。

        (不过本人写的代码并没有考虑longlong的情况,所以如果你比较顾虑,可以自行修改)

        递归三部曲:

        1)确定递归函数的参数和返回值

bool isValid(struct TreeNode* root,struct TreeNode** pre)

(悄悄话:其中,pre为用来记录前一个节点的指针的指针,我一开始本想当作全局变量放在函数前面。测试的时候没问题,但是提交的时候,面对{0}的输入,输出错误,也不知道怎么回事。如果你平时有认真看我的博客的话,你会发现我上一次也用了指针的指针来代替全局变量,错误的具体原因我也不太清楚,这也是我今天破防的原因。我回头再研究一下。我破防的另一个原因是,在第三题,我遍历的时候脑袋短路了,当时就是不明白为什么在最后要写返回值......)

        2)确定终止条件

        如果是空节点 是不是二叉搜索树呢?

        是的,二叉搜索树也可以为空!

if (root == NULL) return true;

        3)确定单层递归的逻辑

  1. bool left = isValid(root->left,pre);
  2. if (*pre != NULL && (*pre)->val >= root->val) return false;
  3. *pre = root; // 记录前一个节点
  4. bool right = isValid(root->right,pre);
  5. return left && right;

2.代码详解

  1. /**
  2. * Definition for a binary tree node.
  3. * struct TreeNode {
  4. * int val;
  5. * struct TreeNode *left;
  6. * struct TreeNode *right;
  7. * };
  8. */
  9. bool isValid(struct TreeNode* root,struct TreeNode** pre) {
  10. if (root == NULL) return true;
  11. bool left = isValid(root->left,pre);
  12. if (*pre != NULL && (*pre)->val >= root->val) return false;
  13. *pre = root; // 记录前一个节点
  14. bool right = isValid(root->right,pre);
  15. return left && right;
  16. }
  17. bool isValidBST(struct TreeNode* root){
  18. struct TreeNode* pre = NULL;
  19. return isValid(root,&pre);
  20. }

         如果你有问题或者有其他想法,欢迎评论区留言,大家可以一起探讨。

 

 

 

 

 

 

 

 

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小小林熬夜学编程/article/detail/505788
推荐阅读
相关标签
  

闽ICP备14008679号