赞
踩
- # 手写数字识别 神经网络处理 高级处理
- import torch
- import torch.nn as nn
- # 数据集处理
- from torchvision import transforms
- from torchvision import datasets
- from torch.utils.data import DataLoader
- # 函数 激活函数等
- import torch.nn.functional as F
- # 优化器包
- import torch.optim as optim
- # 分批
- batch_size = 64
-
- # 1. 数据处理
- transform = transforms.Compose([
- transforms.ToTensor(),
- transforms.Normalize((0.1307, ), (0.3081, ))
- ])
-
- train_dataset = datasets.MNIST(root='../dataset/mnist/',
- train=True,
- download=True,
- transform=transform)
- test_dataset = datasets.MNIST(root='../dataset/mnist/',
- train=False,
- download=True,
- transform=transform)
- train_loader = DataLoader(test_dataset,
- shuffle=True,
- batch_size=batch_size)
-
- test_loader = DataLoader(test_dataset,
- shuffle=False,
- batch_size=batch_size)
-
- # 数据为1 * 28 * 28
- # 2. 建立模型
- class InceptionA(nn.Module):
- def __init__(self, in_channels):
- super(InceptionA, self).__init__()
- '''初始化'''
- """初始化"""
- # 池化分支
- self.branch_pool = nn.Conv2d(in_channels, 24, kernel_size=1)
- # 1 * 1 分支
- self.branch1x1 = nn.Conv2d(in_channels, 16, kernel_size=1)
- # 5 * 5 分支
- self.branch5x5_1 = nn.Conv2d(in_channels, 16, kernel_size=1)
- self.branch5x5_2 = nn.Conv2d(16, 24, kernel_size=5, padding=2)
- # 3 * 3分支
- self.branch3x3_1 = nn.Conv2d(in_channels, 16, kernel_size=1)
- self.branch3x3_2 = nn.Conv2d(16, 24, kernel_size=3, padding=1)
- self.branch3x3_3 = nn.Conv2d(24, 24, kernel_size=3, padding=1)
-
-
- def forward(self, x):
- branch_pool = F.avg_pool2d(x,
- kernel_size=3,
- stride=1,
- padding=1)
- branch_pool = self.branch_pool(branch_pool)
-
- branch1x1 = self.branch1x1(x)
-
- branch5x5 = self.branch5x5_1(x)
- branch5x5 = self.branch5x5_2(branch5x5)
-
- branch3x3 = self.branch3x3_1(x)
- branch3x3 = self.branch3x3_2(branch3x3)
- branch3x3 = self.branch3x3_3(branch3x3)
-
- outputs = [branch1x1, branch5x5, branch3x3, branch_pool]
- # dim 1纬度
- return torch.cat(outputs, dim=1)
-
- class Net(nn.Module):
- def __init__(self):
- super(Net, self).__init__()
- self.conv1 = torch.nn.Conv2d(1, 10, kernel_size=5)
- self.conv2 = torch.nn.Conv2d(88, 20, kernel_size=5)
-
- self.incep1 = InceptionA(in_channels=10)
- self.incep2 = InceptionA(in_channels=20)
-
- self.mp = nn.MaxPool2d(2)
- self.fc = nn.Linear(1408, 10)
-
- def forward(self, x):
- in_size = x.size(0)
- x = F.relu(self.mp(self.conv1(x)))
- x = self.incep1(x)
- x = F.relu(self.mp(self.conv2(x)))
- x = self.incep2(x)
- x = x.view(in_size, -1)
- x = self.fc(x)
- return x
-
- model = Net()
-
-
- # 3.损失函数和优化器 交叉熵损失
- criterion = nn.CrossEntropyLoss()
- optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
-
- # 4.循环训练
- def train(epoch):
- running_loss = 0.0
- for batch_idx, data in enumerate(train_loader):
- inputs, target = data
- optimizer.zero_grad()
-
- outputs = model(inputs)
- loss = criterion(outputs, target)
- loss.backward()
- optimizer.step()
-
- running_loss += loss.item()
- if batch_idx % 300 == 0:
- print('[%d,%d] loss: %.10f' % (epoch+1, batch_idx+1, running_loss / 300))
- running_loss = 0.0
-
- # 测试验证
- def test():
- correct = 0
- total = 0
- with torch.no_grad(): # 不会再进行梯度
- for data in test_loader:
- images, labels = data
- outputs = model(images)
- _, predicted = torch.max(outputs.data, dim=1)
- total+=labels.size(0)
- correct+=(predicted==labels).sum().item()
- print("Accuracy on test set: %d %%" % (100 * correct / total))
-
-
- # 程序入口处
- if __name__ == '__main__':
- for epoch in range(10):
- train(epoch)
- test()
- print("训练结束...")
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。