赞
踩
Series和DataFrame都有一个用于生成各类图表的plot方法。默认情况下,他们所生成的是线型图
- import pandas as pd
- import matplotlib.pyplot as plt
-
- # 指定默认字体(防止中文出现乱码)
- from pylab import mpl
- mpl.rcParams['font.sans-serif'] = ['FangSong'] # 指定‘仿宋’字体
-
- # 读取数据
- df = pd.read_csv('../data/data.csv', index_col='年份')
-
- # 折线图
- df['人均GDP(元)'].plot(color='r', linestyle='--', marker='*')
- plt.show()
用文件中的所有数据绘制折线图
- import pandas as pd
- import matplotlib.pyplot as plt
-
- # 指定默认字体(防止中文出现乱码)
- from pylab import mpl
- mpl.rcParams['font.sans-serif'] = ['FangSong'] # 指定‘仿宋’字体
-
- # 读取数据
- df = pd.read_csv('../data/data.csv', index_col='年份')
-
- # 绘制折线图
- df.plot()
- plt.show()
- import pandas as pd
- import matplotlib.pyplot as plt
-
- # 指定默认字体(防止中文出现乱码)
- from pylab import mpl
- mpl.rcParams['font.sans-serif'] = ['FangSong'] # 指定‘仿宋’字体
-
- # 读取数据
- df = pd.read_csv('../data/data.csv', index_col='年份')
-
- # 柱形图
- df['人均GDP(元)'].plot(kind='bar',color='skyblue')
- plt.show()
用文件中的所有数据绘制柱形图
- import pandas as pd
- import matplotlib.pyplot as plt
-
- # 指定默认字体(防止中文出现乱码)
- from pylab import mpl
- mpl.rcParams['font.sans-serif'] = ['FangSong'] # 指定‘仿宋’字体
-
- # 读取数据
- df = pd.read_csv('../data/data.csv', index_col='年份')
-
- # 柱形图
- df.plot(kind='bar')
- plt.show()
- import pandas as pd
- import matplotlib.pyplot as plt
-
- # 指定默认字体(防止中文出现乱码)
- from pylab import mpl
- mpl.rcParams['font.sans-serif'] = ['FangSong'] # 指定‘仿宋’字体
-
- # 读取数据
- df = pd.read_csv('../data/data.csv', index_col='年份')
-
- # 水平柱形图
- df['人均GDP(元)'].plot(kind='barh',color='skyblue')
- plt.show()
- import pandas as pd
- import matplotlib.pyplot as plt
-
- # 指定默认字体(防止中文出现乱码)
- from pylab import mpl
- mpl.rcParams['font.sans-serif'] = ['FangSong'] # 指定‘仿宋’字体
-
- # 读取数据
- df = pd.read_csv('../data/data.csv', index_col='年份')
-
- # 堆积柱形图
- df.plot(kind='bar', stacked=True)
- plt.show()
- import pandas as pd
- import matplotlib.pyplot as plt
-
- # 指定默认字体(防止中文出现乱码)
- from pylab import mpl
- mpl.rcParams['font.sans-serif'] = ['FangSong'] # 指定‘仿宋’字体
-
- # 读取数据
- df = pd.read_csv('../data/data.csv', index_col='年份')
-
- # 饼状图
- df['人均GDP(元)'].plot(kind='pie')
- plt.show()
-
- import pandas as pd
- import matplotlib.pyplot as plt
-
- # 指定默认字体(防止中文出现乱码)
- from pylab import mpl
- mpl.rcParams['font.sans-serif'] = ['FangSong'] # 指定‘仿宋’字体
-
- # 读取数据
- df = pd.read_csv('../data/data.csv', index_col='年份')
-
- # 面积图
- df['人均GDP(元)'].plot(kind='area')
- plt.show()
- # 直方图
- from pandas import Series
-
- hist_data = Series([2, 3, 4, 5, 2, 3, 3, 4, 6, 5])
- hist_data.plot(kind='hist')
- plt.show()
可以自定义分组
-
- # 直方图---所有数据
- from pandas import Series
-
- hist_data = Series([2, 3, 4, 5, 2, 3, 3, 4, 6, 5])
- # 自己定义分组
- mybins = [1, 3, 5, 7] # 1~3,3~5,5~7分3组
- hist_data.plot(kind='hist', bins=mybins) # 横坐标是分组,纵坐标是频率
- plt.show()
【附件】文件data.csv
- 年份,人均GDP(元),啤酒产量(万千升),居民消费价格指数(上面=100)
- 2000,7857.7,2231.3,100.4
- 2001,8621.7,2288.9,100.7
- 2002,9398.1,2402.7,99.2
- 2003,10542,2540.5,101.2
- 2004,12335.6,2948.6,103.9
- 2005,14185.4,3126.1,101.8
- 2006,16499.7,3543.58,101.5
- 2007,20169.5,3954.07,104.8
- 2008,23707.7,4156.91,105.9
- 2009,25607.5,4162.18,99.3
- 2010,30015,4490.16,103.3
- 2011,35197.8,4834.5,105.4
- 2012,38549.5,4778.58,102.6
- 2013,41907.6,5061.5,102.6
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。