当前位置:   article > 正文

python 图像处理——关于plt.imshow显示cv2.imread读取的图像有“色差”、“发蓝”问题的解决方法_python处理色差问题

python处理色差问题

一、彩色图像出现色差

使用cv2.imread()读取图像时,默认彩色图像的三通道顺序为B、G、R,这与我们所熟知的RGB中的R通道和B通道正好互换位置了。

而使用plt.imshow()函数却默认显示图像的通道顺序为R、G、B,导致图像出现色差发蓝。

彩色图像出现色差代码:

import cv2
import numpy as np
import matplotlib.pyplot as plt

img = cv2.imread('C:/Users/Administrator/Desktop/picture/Lena.jpg')
plt.xticks([]), plt.yticks([]) 		#隐藏x轴和y轴

plt.imshow(img)
plt.show()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

运行结果如图1-1所示,其颜色偏蓝,怪吓人的:
在这里插入图片描述
解决办法:重新组合

import cv2
import numpy as np
import matplotlib.pyplot as plt

img = cv2.imread('C:/Users/Administrator/Desktop/picture/Lena.jpg')

b,g,r = cv2.split(img)			#分别提取B、G、R通道
img2 = cv2.merge([r,g,b])	#重新组合为R、G、B

#或者直接 img2 =  cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

plt.xticks([]), plt.yticks([]) # 隐藏x和y轴

plt.imshow(img2)
plt.show()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15

运行结果如图1-2所示,将BGR调整回RGB后其能正常显示:
在这里插入图片描述

二、灰度图像出现色差原因

那么为什么plt.imshow()显示灰度图(只有一个通道)还会出现色差呢?

上一段讲过,这是因为plt.imshow()函数默认显示三通道图像,把灰度图当作彩色图显示出来了,所以出现了发蓝的现象。

灰色图像出现色差代码:

import cv2
import numpy as np
import matplotlib.pyplot as plt

img_gray = cv2.imread('C:/Users/Administrator/Desktop/picture/Lena.jpg',0)

plt.xticks([]), plt.yticks([]) # 隐藏x和y轴

plt.imshow(img_gray)
plt.show()

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11

运行结果如图2-1所示,其图片显示颜色偏绿色:
在这里插入图片描述
解决办法:在imshow函数添加cmap=‘gray’

import cv2
import numpy as np
import matplotlib.pyplot as plt

#0为灰度图的方式读取
img_gray = cv2.imread('C:/Users/Administrator/Desktop/picture/Lena.jpg',0)

plt.xticks([]), plt.yticks([]) # 隐藏x和y轴

plt.imshow(img_gray,cmap='gray')
plt.show()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11

运行结果如图2-2所示,图片正常显示:
在这里插入图片描述

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小小林熬夜学编程/article/detail/547256
推荐阅读
相关标签
  

闽ICP备14008679号