赞
踩
问题一要求对未来30天每天及每小时的货量进行预测。首先,利用混合ARIMA-LSTM模型进行时间序列预测。ARIMA模型擅长捕捉线性特征和趋势,而LSTM模型处理非线性关系和长期依赖。通过结合这两种模型,可以提高预测精度。具体步骤包括:
问题二要求在考虑运输线路改变的前提下,对未来30天每天及每小时的货量进行预测。解决方法涉及建立神经网络模型和聚类算法。具体步骤包括:
clc clear close all; load('appendix1.mat') %读入附件1 mape_record = []; W_record = []; pre_record = []; for c=1:size(appendix1,2) % 遍历每一个分拣中心 data = appendix1{1,c}; %将分拣中心另存出来 train_num = 5; %用几期的值作为参考来训练权重 %% 下面是ARIMA计算权重 [y_train_ARIMA]=ARIMA(data(1:end-train_num,3),train_num); y_ture_ARIMA = data(end-train_num+1:end,3); wmape_ARIMA = sum(abs(y_train_ARIMA-y_ture_ARIMA)./y_ture_ARIMA); % 下面计算MAPE APE_ARIMA = abs(y_ture_ARIMA - y_train_ARIMA) ./ abs(y_ture_ARIMA); MAPE_ARIMA = mean(APE_ARIMA); %% 下面是LSTM计算权重 ref = 30; %参考历史的多少期 [y_train_LSTM]=LSTM(data(1:end-train_num,3),ref,train_num); y_ture_LSTM = data(end-train_num+1:end,3); wmape_LSTM = sum(abs(y_train_LSTM-y_ture_LSTM)./y_ture_LSTM); % 下面计算MAPE APE_LSTM = abs(y_ture_LSTM - y_train_LSTM) ./ abs(y_ture_LSTM); MAPE_LSTM = mean(APE_LSTM); %% 下面计算权重 W_ARIMA = (1/wmape_ARIMA)/((1/wmape_ARIMA)+(1/wmape_LSTM)); W_LSTM = 1-W_ARIMA; W_record(c,1) = data(1,1); %记录id W_record(c,2) = W_ARIMA; %记录ARIMA的MAPE W_record(c,3) = W_LSTM; %记录LSTM的MAPE %% 下面记录MAPE mape_record(c,1) = data(1,1); %记录id mape_record(c,2) = MAPE_ARIMA; %记录ARIMA的MAPE mape_record(c,3) = MAPE_LSTM; %记录LSTM的MAPE %% 下面正式预测 pre_step = 30; %预测未来多少期的值 % ARIMA [pre_ARIMA]=ARIMA(data(:,3),pre_step); % LSTM [pre_LSTM]=LSTM(data(:,3),ref,pre_step); % 混合 pre = pre_ARIMA*W_ARIMA + pre_LSTM*W_LSTM; pre_record(1,c) = data(1,1); %记录id pre_record(2:1+pre_step,c) = pre; %记录预测值 end
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。