赞
踩
这篇文章将写一个 demo 教大家将从 Kafka Source 的数据 Sink 到 MySQL 中去。
我们先来看下 Flink 从 Kafka topic 中获取数据的 demo,首先你需要安装好了 Flink 和 Kafka 。
运行启动 Flink、Zookepeer、Kafka
好了,都启动了!
- DROP TABLE IF EXISTS `student`;
- CREATE TABLE `student` (
- `id` int(11) unsigned NOT NULL AUTO_INCREMENT,
- `name` varchar(25) COLLATE utf8_bin DEFAULT NULL,
- `password` varchar(25) COLLATE utf8_bin DEFAULT NULL,
- `age` int(10) DEFAULT NULL,
- PRIMARY KEY (`id`)
- ) ENGINE=InnoDB AUTO_INCREMENT=5 DEFAULT CHARSET=utf8 COLLATE=utf8_bin;
Student.java
- package com.zhisheng.flink.model;
-
- /**
- * Desc:
- * weixin: zhisheng_tian
- * blog: http://www.54tianzhisheng.cn/
- */
- public class Student {
- public int id;
- public String name;
- public String password;
- public int age;
-
- public Student() {
- }
-
- public Student(int id, String name, String password, int age) {
- this.id = id;
- this.name = name;
- this.password = password;
- this.age = age;
- }
-
- @Override
- public String toString() {
- return "Student{" +
- "id=" + id +
- ", name='" + name + '\'' +
- ", password='" + password + '\'' +
- ", age=" + age +
- '}';
- }
-
- public int getId() {
- return id;
- }
-
- public void setId(int id) {
- this.id = id;
- }
-
- public String getName() {
- return name;
- }
-
- public void setName(String name) {
- this.name = name;
- }
-
- public String getPassword() {
- return password;
- }
-
- public void setPassword(String password) {
- this.password = password;
- }
-
- public int getAge() {
- return age;
- }
-
- public void setAge(int age) {
- this.age = age;
- }
- }
工具类往 kafka topic student 发送数据
- import com.alibaba.fastjson.JSON;
- import com.zhisheng.flink.model.Metric;
- import com.zhisheng.flink.model.Student;
- import org.apache.kafka.clients.producer.KafkaProducer;
- import org.apache.kafka.clients.producer.ProducerRecord;
-
- import java.util.HashMap;
- import java.util.Map;
- import java.util.Properties;
-
- /**
- * 往kafka中写数据
- * 可以使用这个main函数进行测试一下
- * weixin: zhisheng_tian
- * blog: http://www.54tianzhisheng.cn/
- */
- public class KafkaUtils2 {
- public static final String broker_list = "localhost:9092";
- public static final String topic = "student"; //kafka topic 需要和 flink 程序用同一个 topic
-
- public static void writeToKafka() throws InterruptedException {
- Properties props = new Properties();
- props.put("bootstrap.servers", broker_list);
- props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
- props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
- KafkaProducer producer = new KafkaProducer<String, String>(props);
-
- for (int i = 1; i <= 100; i++) {
- Student student = new Student(i, "zhisheng" + i, "password" + i, 18 + i);
- ProducerRecord record = new ProducerRecord<String, String>(topic, null, null, JSON.toJSONString(student));
- producer.send(record);
- System.out.println("发送数据: " + JSON.toJSONString(student));
- }
- producer.flush();
- }
-
- public static void main(String[] args) throws InterruptedException {
- writeToKafka();
- }
- }
该类就是 Sink Function,继承了 RichSinkFunction ,然后重写了里面的方法。在 invoke 方法中将数据插入到 MySQL 中。
- package com.zhisheng.flink.sink;
-
- import com.zhisheng.flink.model.Student;
- import org.apache.flink.configuration.Configuration;
- import org.apache.flink.streaming.api.functions.sink.RichSinkFunction;
-
- import java.sql.Connection;
- import java.sql.DriverManager;
- import java.sql.PreparedStatement;
-
- /**
- * Desc:
- * weixin: zhisheng_tian
- * blog: http://www.54tianzhisheng.cn/
- */
- public class SinkToMySQL extends RichSinkFunction<Student> {
- PreparedStatement ps;
- private Connection connection;
-
- /**
- * open() 方法中建立连接,这样不用每次 invoke 的时候都要建立连接和释放连接
- *
- * @param parameters
- * @throws Exception
- */
- @Override
- public void open(Configuration parameters) throws Exception {
- super.open(parameters);
- connection = getConnection();
- String sql = "insert into Student(id, name, password, age) values(?, ?, ?, ?);";
- ps = this.connection.prepareStatement(sql);
- }
-
- @Override
- public void close() throws Exception {
- super.close();
- //关闭连接和释放资源
- if (connection != null) {
- connection.close();
- }
- if (ps != null) {
- ps.close();
- }
- }
-
- /**
- * 每条数据的插入都要调用一次 invoke() 方法
- *
- * @param value
- * @param context
- * @throws Exception
- */
- @Override
- public void invoke(Student value, Context context) throws Exception {
- //组装数据,执行插入操作
- ps.setInt(1, value.getId());
- ps.setString(2, value.getName());
- ps.setString(3, value.getPassword());
- ps.setInt(4, value.getAge());
- ps.executeUpdate();
- }
-
- private static Connection getConnection() {
- Connection con = null;
- try {
- Class.forName("com.mysql.jdbc.Driver");
- con = DriverManager.getConnection("jdbc:mysql://localhost:3306/test?useUnicode=true&characterEncoding=UTF-8", "root", "root123456");
- } catch (Exception e) {
- System.out.println("-----------mysql get connection has exception , msg = "+ e.getMessage());
- }
- return con;
- }
- }
这里的 source 是从 kafka 读取数据的,然后 Flink 从 Kafka 读取到数据(JSON)后用阿里 fastjson 来解析成 student 对象,然后在 addSink 中使用我们创建的 SinkToMySQL,这样就可以把数据存储到 MySQL 了。
- package com.zhisheng.flink;
-
- import com.alibaba.fastjson.JSON;
- import com.zhisheng.flink.model.Student;
- import com.zhisheng.flink.sink.SinkToMySQL;
- import org.apache.flink.api.common.serialization.SimpleStringSchema;
- import org.apache.flink.streaming.api.datastream.DataStreamSource;
- import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
- import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
- import org.apache.flink.streaming.api.functions.sink.PrintSinkFunction;
- import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer011;
- import org.apache.flink.streaming.connectors.kafka.FlinkKafkaProducer011;
-
- import java.util.Properties;
-
- /**
- * Desc:
- * weixin: zhisheng_tian
- * blog: http://www.54tianzhisheng.cn/
- */
- public class Main3 {
- public static void main(String[] args) throws Exception {
- final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
-
- Properties props = new Properties();
- props.put("bootstrap.servers", "localhost:9092");
- props.put("zookeeper.connect", "localhost:2181");
- props.put("group.id", "metric-group");
- props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
- props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
- props.put("auto.offset.reset", "latest");
-
- SingleOutputStreamOperator<Student> student = env.addSource(new FlinkKafkaConsumer011<>(
- "student", //这个 kafka topic 需要和上面的工具类的 topic 一致
- new SimpleStringSchema(),
- props)).setParallelism(1)
- .map(string -> JSON.parseObject(string, Student.class)); //Fastjson 解析字符串成 student 对象
-
- student.addSink(new SinkToMySQL()); //数据 sink 到 mysql
-
- env.execute("Flink add sink");
- }
- }
运行 Flink 程序,然后再运行 KafkaUtils2.java 工具类,这样就可以了。
如果数据插入成功了,那么我们查看下我们的数据库:
数据库中已经插入了 100 条我们从 Kafka 发送的数据了。证明我们的 SinkToMySQL 起作用了。
原创地址为:http://www.54tianzhisheng.cn/2018/10/28/flink-sources/
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。