赞
踩
Hbase默认只提供了基于字典序排序的rowKey索引,当使用rowKey来进行数据查询的时候速度较快,但是如果使用非rowKey来查询的话就会使用filter来对全表进行全表扫描操作,很大程度上降低了检索性能。针对Hbase rowKey之外的条件查询效率低问题,可以通过Phoenix提供的二级索引技术来解决这种检索的场景。
一、phoenix二级索引概念
Phoenix可以理解成HBase的开源SQL皮肤。通过操作SQL语句可以完美地降低学习Hbase语法的成本。可以使用标准JDBC API代替HBase客户端API来创建表、插入数据和查询数据。
Phoenix的一级索引是它的主键(对应Hbase中的rowkey,这个是默认的机制),二级索引是主键索引之外,根据表的具体情况创建的其他索引。创建二级索引的目的就是为了加快Hbase地查询速度。
二、phoenix二级索引原理
HBase在0.92之后引入了协处理器,添加了一些新的特性,能够轻易建立二级索引、实现访问控制。Phoenix的二级索引其实就是使用了大量的协处理器来实现的。phoenix二级索引其实是在hbase额外建了一张表,该表数据无需我们维护,phoenix自动维护。Phoenix二级索引在写入数据时会针对创建的字段和rowkey进行绑定,查询时先根据这个字段查询到对应的rowkey,然后根据rowkey查询数据,二级索引也可以理解为查询数据时多次使用索引的情况。类似于ES的倒排索引,不同的是ES的倒排索引是针对全文分词的索引,二级索引是针对表字段的索引。
1. phoenix中创建测试表
create table if not exists student_info(
stu_id varchar primary key,
stu_name varchar ,
birthday varchar ,
sex varchar
) COLUMN_ENCODED_BYTES=0;
2. 添加测试数据
upsert into student_info values('001','WangWu','1995-04-30','男');
upsert into student_info values('002','ZhaoLiu','1998-08-28','男');
upsert into student_info values('003','MaSu','1993-09-10','男');
upsert into student_info values('004','TianQi','1992-11-12','男');
upsert into student_info values('005','ZhangSan','1993-01-14','女');
upsert into student_info values('006','LiSi','1990-06-18','女');
upsert into student_info values('007','KeLe','1992-07-04','女');
upsert into student_info values('008','XiaoMi','1993-09-24','女');
upsert into student_info values('009','BaiTao','1994-08-31','女');
upsert into student_info values('010','SuYa','1991-03-01','女');
3. 通过tables命令查看phoenix中所有表
0: jdbc:phoenix:> !tables
+------------+--------------+---------------+---------------+----------+------------+----------------------------+-----------------+--------------+-----------------+---------------+---------------+-----------+
| TABLE_CAT | TABLE_SCHEM | TABLE_NAME | TABLE_TYPE | REMARKS | TYPE_NAME | SELF_REFERENCING_COL_NAME | REF_GENERATION | INDEX_STATE | IMMUTABLE_ROWS | SALT_BUCKETS | MULTI_TENANT | VIEW_STAT |
+------------+--------------+---------------+---------------+----------+------------+----------------------------+-----------------+--------------+-----------------+---------------+---------------+-----------+
| | SYSTEM | CATALOG | SYSTEM TABLE | | | | | | false | null | false | |
| | SYSTEM | FUNCTION | SYSTEM TABLE | | | | | | false | null | false | |
| | SYSTEM | LOG | SYSTEM TABLE | | | | | | true | 32 | false | |
| | SYSTEM | SEQUENCE | SYSTEM TABLE | | | | | | false | null | false | |
| | SYSTEM | STATS | SYSTEM TABLE | | | | | | false | null | false | |
| | | STUDENT_INFO | TABLE | | | | | | false | null | false | |
+------------+--------------+---------------+---------------+----------+------------+----------------------------+-----------------+--------------+-----------------+---------------+---------------+-----------+
4. primarykeys命令查看主键
0: jdbc:phoenix:> !primarykeys student_info
+------------+--------------+---------------+--------------+----------+----------+--------------+------------+------------+--------------+----------+----------------+
| TABLE_CAT | TABLE_SCHEM | TABLE_NAME | COLUMN_NAME | KEY_SEQ | PK_NAME | ASC_OR_DESC | DATA_TYPE | TYPE_NAME | COLUMN_SIZE | TYPE_ID | VIEW_CONSTANT |
+------------+--------------+---------------+--------------+----------+----------+--------------+------------+------------+--------------+----------+----------------+
|| | STUDENT_INFO | STU_ID |1| | A | 12 | VARCHAR | null |12| |
+------------+--------------+---------------+--------------+----------+----------+--------------+------------+------------+--------------+----------+----------------+
5. indexes命令查看索引
0: jdbc:phoenix:> !indexes student_info
+------------+--------------+-------------+-------------+------------------+-------------+-------+-------------------+--------------+--------------+--------------+--------+-------------------+------------+---+
| TABLE_CAT | TABLE_SCHEM | TABLE_NAME | NON_UNIQUE | INDEX_QUALIFIER | INDEX_NAME | TYPE | ORDINAL_POSITION | COLUMN_NAME | ASC_OR_DESC | CARDINALITY | PAGES | FILTER_CONDITION | DATA_TYPE | T |
+------------+--------------+-------------+-------------+------------------+-------------+-------+-------------------+--------------+--------------+--------------+--------+-------------------+------------+---+
+------------+--------------+-------------+-------------+------------------+-------------+-------+-------------------+--------------+--------------+--------------+--------+-------------------+------------+---+
6. 注意事项
Phoenix二级索引需要Hbase的配置支持,需要在HBase的各HRegionserver节点的hbase-site.xml文件中添加如下配置:
<property>
<name>hbase.regionserver.wal.codec</name>
<value>org.apache.hadoop.hbase.regionserver.wal.IndexedWALEditCodec</value>
</property>
<property>
<name>hbase.region.server.rpc.scheduler.factory.class</name>
<value>org.apache.hadoop.hbase.ipc.PhoenixRpcSchedulerFactory</value>
<description>Factory to create the Phoenix RPC Scheduler that uses separate queues for index and metadata updates</description>
</property>
<property>
<name>hbase.rpc.controllerfactory.class</name>
<value>org.apache.hadoop.hbase.ipc.controller.ServerRpcControllerFactory</value>
<description>Factory to create the Phoenix RPC Scheduler that uses separate queues for index and metadata updates</description>
</property>
如果hbase-site.xml文件中没有配制如上信息,在phoenix中创建二级索引将会出现如下异常信息:
0: jdbc:phoenix:> CREATE INDEX idx_student_name ON student_info(stu_name);
Error: ERROR 1029 (42Y88): Mutable secondary indexes must have the hbase.regionserver.wal.codec property set to org.apache.hadoop.hbase.regionserver.wal.IndexedWALEditCodec in the hbase-sites.xml of every region server. tableName=IDX_STUDENT_NAME (state=42Y88,code=1029)
java.sql.SQLException: ERROR 1029 (42Y88): Mutable secondary indexes must have the hbase.regionserver.wal.codec property set to org.apache.hadoop.hbase.regionserver.wal.IndexedWALEditCodec in the hbase-sites.xml of every region server. tableName=IDX_STUDENT_NAME
at org.apache.phoenix.exception.SQLExceptionCode$Factory$1.newException(SQLExceptionCode.java:494)
at org.apache.phoenix.exception.SQLExceptionInfo.buildException(SQLExceptionInfo.java:150)
at org.apache.phoenix.schema.MetaDataClient.createIndex(MetaDataClient.java:1528)
at org.apache.phoenix.compile.CreateIndexCompiler$1.execute(CreateIndexCompiler.java:85)
at org.apache.phoenix.jdbc.PhoenixStatement$2.call(PhoenixStatement.java:408)
at org.apache.phoenix.jdbc.PhoenixStatement$2.call(PhoenixStatement.java:391)
at org.apache.phoenix.call.CallRunner.run(CallRunner.java:53)
at org.apache.phoenix.jdbc.PhoenixStatement.executeMutation(PhoenixStatement.java:390)
at org.apache.phoenix.jdbc.PhoenixStatement.executeMutation(PhoenixStatement.java:378)
at org.apache.phoenix.jdbc.PhoenixStatement.execute(PhoenixStatement.java:1825)
at sqlline.Commands.execute(Commands.java:822)
at sqlline.Commands.sql(Commands.java:732)
at sqlline.SqlLine.dispatch(SqlLine.java:813)
at sqlline.SqlLine.begin(SqlLine.java:686)
at sqlline.SqlLine.start(SqlLine.java:398)
at sqlline.SqlLine.main(SqlLine.java:291)
phoenix的二级索引分为四种,有全局索引、本地索引、覆盖索引、函数索引。
三、全局索引
全局索引适合那些读多写少的场景。如果使用全局索引,读数据基本不损耗性能,所有的性能损耗都来源于写数据。数据表的添加、删除和修改都会更新相关的索引表(数据删除了,索引表中的数据也会删除;数据增加了,索引表的数据也会增加)。而查询数据的时候,Phoenix会通过索引表来快速低损耗地获取数据。
1. 没有二级索引检索性能
默认情况下,phoenix只提供主键即一级索引,除主键外如果你的查询语句中还有除主键之外的列的时候,Phoenix不会使用索引,而是使用Filter进行全表扫描。
0: jdbc:phoenix:> explain select stu_id,stu_name from student_info where stu_name = 'WangWu';
+------------------------------------------------------------------------+-----------------+----------------+--------------+
| PLAN | EST_BYTES_READ | EST_ROWS_READ | EST_INFO_TS |
+------------------------------------------------------------------------+-----------------+----------------+--------------+
| CLIENT 1-CHUNK PARALLEL 1-WAY ROUND ROBIN FULL SCAN OVER STUDENT_INFO | null | null | null |
| SERVER FILTER BY STU_NAME = 'WangWu' | null | null | null |
+------------------------------------------------------------------------+-----------------+----------------+--------------+
2 rows selected (0.049 seconds)
2. 创建全局二级索引
0: jdbc:phoenix:> create index idx_student_name on student_info(stu_name) ;
10 rows affected (6.695 seconds)
3. indexes命令查看索引
0: jdbc:phoenix:> !indexes student_info;
+------------+--------------+---------------+-------------+------------------+-------------------+-------+-------------------+--------------+--------------+--------------+--------+-------------------+--------+
| TABLE_CAT | TABLE_SCHEM | TABLE_NAME | NON_UNIQUE | INDEX_QUALIFIER | INDEX_NAME | TYPE | ORDINAL_POSITION | COLUMN_NAME | ASC_OR_DESC | CARDINALITY | PAGES | FILTER_CONDITION | DATA_T |
+------------+--------------+---------------+-------------+------------------+-------------------+-------+-------------------+--------------+--------------+--------------+--------+-------------------+--------+
|| | STUDENT_INFO | true || IDX_STUDENT_NAME |3| 1 |0:STU_NAME| A || || 12 |
| | | STUDENT_INFO | true | | IDX_STUDENT_NAME | 3 | 2 | :STU_ID | A | | | | 12 |
+------------+--------------+---------------+-------------+------------------+-------------------+-------+-------------------+--------------+--------------+--------------+--------+-------------------+--------+
4. hbase shell的list命令查看表
#在hbase shell中通过list命令可以看到phoenix创建的全局索引就是hbase中的一张表
hbase(main):009:0> list
TABLE
IDX_STUDENT_NAME
STUDENT_INFO
SYSTEM.CATALOG
SYSTEM.FUNCTION
SYSTEM.LOG
SYSTEM.MUTEX
SYSTEM.SEQUENCE
SYSTEM.STATS
8 row(s)
Took 0.0458 seconds
=> ["IDX_STUDENT_NAME", "STUDENT_INFO", "SYSTEM.CATALOG", "SYSTEM.FUNCTION", "SYSTEM.LOG", "SYSTEM.MUTEX", "SYSTEM.SEQUENCE", "SYSTEM.STATS"]
5. scan查看hbase表内容
#在hbase shell中,通过scan查看全局索引表IDX_STUDENT_NAME中的内容
hbase(main):011:0> scan "IDX_STUDENT_NAME"
ROW COLUMN+CELL
BaiTao\x00009 column=0:_0, timestamp=1673778191981, value=x
KeLe\x00007 column=0:_0, timestamp=1673778191981, value=x
LiSi\x00006 column=0:_0, timestamp=1673778191981, value=x
MaSu\x00003 column=0:_0, timestamp=1673778191981, value=x
SuYa\x00010 column=0:_0, timestamp=1673778191981, value=x
TianQi\x00004 column=0:_0, timestamp=1673778191981, value=x
WangWu\x00001 column=0:_0, timestamp=1673778191981, value=x
XiaoMi\x00008 column=0:_0, timestamp=1673778191981, value=x
ZhangSan\x00005 column=0:_0, timestamp=1673778191981, value=x
ZhaoLiu\x00002 column=0:_0, timestamp=1673778191981, value=x
10 row(s)
Took 0.0274 seconds
6. 验证全局索引性能
再次执行,由全表扫描变成范围检索,提高查询效率:
0: jdbc:phoenix:> explain select stu_id,stu_name from student_info where stu_name = 'WangWu';
+----------------------------------------------------------------------------------------+-----------------+----------------+--------------+
| PLAN | EST_BYTES_READ | EST_ROWS_READ | EST_INFO_TS |
+----------------------------------------------------------------------------------------+-----------------+----------------+--------------+
| CLIENT 1-CHUNK PARALLEL 1-WAY ROUND ROBIN RANGE SCAN OVER IDX_STUDENT_NAME ['WangWu'] | null | null | null |
| SERVER FILTER BY FIRST KEY ONLY | null | null | null |
+----------------------------------------------------------------------------------------+-----------------+----------------+--------------+
2 rows selected (0.059 seconds)
需要注意的是,当查询的时候出现非索引字段时,还会变成FULL SCAN的全表扫描,因为非索引字段不在rowkey中,索引中没有它所以无法走索引。
0: jdbc:phoenix:> explain select stu_id,stu_name,birthday,sex from student_info where stu_name = 'WangWu';
+------------------------------------------------------------------------+-----------------+----------------+--------------+
| PLAN | EST_BYTES_READ | EST_ROWS_READ | EST_INFO_TS |
+------------------------------------------------------------------------+-----------------+----------------+--------------+
| CLIENT 1-CHUNK PARALLEL 1-WAY ROUND ROBIN FULL SCAN OVER STUDENT_INFO | null | null | null |
| SERVER FILTER BY STU_NAME = 'WangWu' | null | null | null |
+------------------------------------------------------------------------+-----------------+----------------+--------------+
2 rows selected (0.037 seconds)
四、本地索引
本地索引适合写多读少或者存储空间有限的场景。和全局索引一样,Phoenix也会在查询的时候自动选择是否使用本地索引。本地索引之所以是本地,只要是因为索引数据和真实数据存储在同一台机器上,这样做主要是为了避免网络数据传输的开销。
1. 创建表
#为了与全局索引好区分,我们重新创建测试表
create table if not exists teacher_info(
tea_id varchar primary key,
tea_name varchar
) COLUMN_ENCODED_BYTES=0;
2. 添加测试数据
upsert into teacher_info values('1001','Immen');
upsert into teacher_info values('1002','Lucy' );
upsert into teacher_info values('1003','Sady' );
upsert into teacher_info values('1004','Coco' );
3. 查看hbase中teacher_info表内容
hbase(main):013:0> scan "TEACHER_INFO"
ROW COLUMN+CELL
1001 column=0:TEA_NAME, timestamp=1673780586772, value=Immen
1001 column=0:_0, timestamp=1673780586772, value=x
1002 column=0:TEA_NAME, timestamp=1673780586808, value=Lucy
1002 column=0:_0, timestamp=1673780586808, value=x
1003 column=0:TEA_NAME, timestamp=1673780586836, value=Sady
1003 column=0:_0, timestamp=1673780586836, value=x
1004 column=0:TEA_NAME, timestamp=1673780588452, value=Coco
1004 column=0:_0, timestamp=1673780588452, value=x
4 row(s)
Took 0.0630 seconds
4. 创建本地索引
0: jdbc:phoenix:> create local index idx_teacher_name on teacher_info(tea_name);
4 rows affected (6.376 seconds)
5. indexes命令查看表索引
0: jdbc:phoenix:> !indexes teacher_info;
+------------+--------------+---------------+-------------+------------------+-------------------+-------+-------------------+--------------+--------------+--------------+--------+-------------------+--------+
| TABLE_CAT | TABLE_SCHEM | TABLE_NAME | NON_UNIQUE | INDEX_QUALIFIER | INDEX_NAME | TYPE | ORDINAL_POSITION | COLUMN_NAME | ASC_OR_DESC | CARDINALITY | PAGES | FILTER_CONDITION | DATA_T |
+------------+--------------+---------------+-------------+------------------+-------------------+-------+-------------------+--------------+--------------+--------------+--------+-------------------+--------+
| | | TEACHER_INFO | true | | IDX_TEACHER_NAME | 3 | 1 | _INDEX_ID | A | | | | 5 |
| | | TEACHER_INFO | true | | IDX_TEACHER_NAME | 3 | 2 | 0:TEA_NAME | A | | | | 12 |
| | | TEACHER_INFO | true | | IDX_TEACHER_NAME | 3 | 3 | :TEA_ID | A | | | | 12 |
+------------+--------------+---------------+-------------+------------------+-------------------+-------+-------------------+--------------+--------------+--------------+--------+-------------------+--------+
6. 查看hbase中表
通过hbase中的list命令是找不到在phoenix中创建的本地二级索引表的。当通过scan命令查看teacher_info表内容时,会发现多了一些内容。实际上本地索引的数据会与表中的数据放在一起。
hbase(main):020:0> list
TABLE
IDX_STUDENT_NAME
STUDENT_INFO
SYSTEM.CATALOG
SYSTEM.FUNCTION
SYSTEM.LOG
SYSTEM.MUTEX
SYSTEM.SEQUENCE
SYSTEM.STATS
TEACHER_INFO
9 row(s)
Took 0.0226 seconds
=> ["IDX_STUDENT_NAME", "STUDENT_INFO", "SYSTEM.CATALOG", "SYSTEM.FUNCTION", "SYSTEM.LOG", "SYSTEM.MUTEX", "SYSTEM.SEQUENCE", "SYSTEM.STATS", "TEACHER_INFO"]
#查看TEACHER_INFO表中数据
hbase(main):021:0> scan "TEACHER_INFO"
ROW COLUMN+CELL
\x00\x00Coco\x001004 column=L#0:_0, timestamp=1673780588452, value=_0
\x00\x00Immen\x001001 column=L#0:_0, timestamp=1673780586772, value=_0
\x00\x00Lucy\x001002 column=L#0:_0, timestamp=1673780586808, value=_0
\x00\x00Sady\x001003 column=L#0:_0, timestamp=1673780586836, value=_0
1001 column=0:TEA_NAME, timestamp=1673780586772, value=Immen
1001 column=0:_0, timestamp=1673780586772, value=x
1002 column=0:TEA_NAME, timestamp=1673780586808, value=Lucy
1002 column=0:_0, timestamp=1673780586808, value=x
1003 column=0:TEA_NAME, timestamp=1673780586836, value=Sady
1003 column=0:_0, timestamp=1673780586836, value=x
1004 column=0:TEA_NAME, timestamp=1673780588452, value=Coco
1004 column=0:_0, timestamp=1673780588452, value=x
8 row(s)
Took 0.0274 seconds
五、覆盖索引
当全局索引查询出现非索引字段时,还会出现FULL SCAN的全表扫描的场景时,我们可以通过覆盖索引来解决这种场景。即在创建索引时使用关键字include将非索引字段包含过来。
1. 删除idx_student_name索引
#删除之前创建的idx_student_name索引
drop index idx_student_name on student_info;
2. 创建idx_student_name覆盖索引
#重新创建idx_student_name覆盖索引
create index idx_student_name on student_info(stu_name) include(birthday,sex);
3. hbase通过scan查数据
hbase(main):029:0> scan "IDX_TEACHER_NAME"
ROW COLUMN+CELL
Coco\x001004 column=0:0:TEA_AGE, timestamp=1673782115335, value=19
Coco\x001004 column=0:_0, timestamp=1673782115335, value=x
Immen\x001001 column=0:0:TEA_AGE, timestamp=1673782115335, value=19
Immen\x001001 column=0:_0, timestamp=1673782115335, value=x
Lucy\x001002 column=0:0:TEA_AGE, timestamp=1673782115335, value=19
Lucy\x001002 column=0:_0, timestamp=1673782115335, value=x
Sady\x001003 column=0:0:TEA_AGE, timestamp=1673782115335, value=19
Sady\x001003 column=0:_0, timestamp=1673782115335, value=x
4 row(s)
Took 0.0190 seconds
4. 验证覆盖索引
0: jdbc:phoenix:> explain select stu_id,stu_name,birthday,sex from student_info where stu_name = 'WangWu';
+----------------------------------------------------------------------------------------+-----------------+----------------+--------------+
| PLAN | EST_BYTES_READ | EST_ROWS_READ | EST_INFO_TS |
+----------------------------------------------------------------------------------------+-----------------+----------------+--------------+
| CLIENT 1-CHUNK PARALLEL 1-WAY ROUND ROBIN RANGE SCAN OVER IDX_STUDENT_NAME ['WangWu'] | null | null | null |
+----------------------------------------------------------------------------------------+-----------------+----------------+--------------+
1 row selected (0.179 seconds)
六、函数索引
函数索引从4.3版本就有,这种索引的内容不局限于列,还能在表达式上建立索引。基于Phoenix封装的函数(function)表达式构建索引,以改函数表达式结果和原rowkey拼接作为索引表rowkey。函数索引的特点是能根据表达式创建索引,适用于对查询表过滤条件是表达式的表创建索引。
1. 删除索引
#删除student_info表之前创建的索引
0: jdbc:phoenix:> drop index idx_student_name on student_info;
2. 创建函数索引
0: jdbc:phoenix:> create index idx_student_fun on student_info(upper(stu_name));
10 rows affected (6.425 seconds)
3. 查看student_info表对应的函数索引
0: jdbc:phoenix:> !indexes student_info;
+------------+--------------+---------------+-------------+------------------+------------------+-------+-------------------+--------------------+--------------+--------------+--------+-------------------+---+
| TABLE_CAT | TABLE_SCHEM | TABLE_NAME | NON_UNIQUE | INDEX_QUALIFIER | INDEX_NAME | TYPE | ORDINAL_POSITION | COLUMN_NAME | ASC_OR_DESC | CARDINALITY | PAGES | FILTER_CONDITION | D |
+------------+--------------+---------------+-------------+------------------+------------------+-------+-------------------+--------------------+--------------+--------------+--------+-------------------+---+
| | | STUDENT_INFO | true | | IDX_STUDENT_FUN | 3 | 1 | : UPPER(STU_NAME) | A | | | | 1 |
| | | STUDENT_INFO | true | | IDX_STUDENT_FUN | 3 | 2 | :STU_ID | A | | | | 1 |
+------------+--------------+---------------+-------------+------------------+------------------+-------+-------------------+--------------------+--------------+--------------+--------+-------------------+---+
4. 查看IDX_STUDENT_FUN函数索引在hbase 中的表内容
hbase(main):050:0> scan "IDX_STUDENT_FUN"
ROW COLUMN+CELL
BAITAO\x00009 column=0:_0, timestamp=1673792058388, value=x
KELE\x00007 column=0:_0, timestamp=1673792058388, value=x
LISI\x00006 column=0:_0, timestamp=1673792058388, value=x
MASU\x00003 column=0:_0, timestamp=1673792058388, value=x
SUYA\x00010 column=0:_0, timestamp=1673792058388, value=x
TIANQI\x00004 column=0:_0, timestamp=1673792058388, value=x
WANGWU\x00001 column=0:_0, timestamp=1673792058388, value=x
XIAOMI\x00008 column=0:_0, timestamp=1673792058388, value=x
ZHANGSAN\x00005 column=0:_0, timestamp=1673792058388, value=x
ZHAOLIU\x00002 column=0:_0, timestamp=1673792058388, value=x
10 row(s)
Took 0.1377 seconds
5. 验证函数索引
0: jdbc:phoenix:> explain select upper(stu_name) from student_info where upper(stu_name)='BAITAO';
+---------------------------------------------------------------------------------------+-----------------+----------------+--------------+
| PLAN | EST_BYTES_READ | EST_ROWS_READ | EST_INFO_TS |
+---------------------------------------------------------------------------------------+-----------------+----------------+--------------+
| CLIENT 1-CHUNK PARALLEL 1-WAY ROUND ROBIN RANGE SCAN OVER IDX_STUDENT_FUN ['BAITAO'] | null | null | null |
| SERVER FILTER BY FIRST KEY ONLY | null | null | null |
+---------------------------------------------------------------------------------------+-----------------+----------------+--------------+
2 rows selected (0.045 seconds)
七、总结
在索引范围上,Phoenix的索引可以分为全局索引和本地索引,两种索引适合的场景不同。全局索引适合多读少写的业务场景,本地索引适用于写操作频繁的场景,可以结合实际业务选择适合的索引方式。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。