当前位置:   article > 正文

torch.argmax(dim=1)用法

argmax(dim=1)

一、torch.argmax()

(1)torch.argmax(input, dim=None, keepdim=False)返回指定维度最大值的序号;
(2)dim给定的定义是:the demention to reduce.也就是把dim这个维度的,变成这个维度的最大值的index。

二、栗子

# -*- coding: utf-8 -*-
"""
Created on Fri Jan  7 15:05:09 2022

@author: 86493
"""
import torch
a=torch.tensor([
              [
                  [1, 5, 5, 2],
                  [9, -6, 2, 8],
                  [-3, 7, -9, 1]
              ],
 
              [
                  [-1, 7, -5, 2],
                  [9, 6, 2, 8],
                  [3, 7, 9, 1]
              ]])
b=torch.argmax(a,dim=1)
print(a)
print(a.shape)
print(b)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23

(1)这个例子,tensor(2, 3, 4),因为是dim=1,即将第二维度去掉,变成tensor(2, 4),将每一个3x4数组,变成1x4数组。

[1, 5, 5, 2],
[9, -6, 2, 8],
[-3, 7, -9, 1]
  • 1
  • 2
  • 3

如上所示的3×4矩阵,取每一列的最大值对应的下标,a[0]中第一列的最大值的行标为1, 第二列的最大值的行标为2,第三列的最大值行标为0,第4列的最大值行标为1,所以最后输出[1, 2, 0, 1],取每一列的最大值,结果为:

tensor([[[ 1,  5,  5,  2],
         [ 9, -6,  2,  8],
         [-3,  7, -9,  1]],

        [[-1,  7, -5,  2],
         [ 9,  6,  2,  8],
         [ 3,  7,  9,  1]]])
torch.Size([2, 3, 4])
tensor([[1, 2, 0, 1],
        [1, 0, 2, 1]])
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

(1)如果改成dim=2,即将第三维去掉,即取每一行的最大值对应的下标,结果为tensor(2, 3)

import torch
a=torch.tensor([
              [
                  [1, 5, 5, 2],
                  [9, -6, 2, 8],
                  [-3, 7, -9, 1]
              ],
 
              [
                  [-1, 7, -5, 2],
                  [9, 6, 2, 8],
                  [3, 7, 9, 1]
              ]])
b=torch.argmax(a,dim=2)
print(b)
print(a.shape)
"""
tensor([[2, 0, 1],
        [1, 0, 2]])
torch.Size([2, 3, 4])
"""
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小小林熬夜学编程/article/detail/659106
推荐阅读
  

闽ICP备14008679号