我们的故事要从1887年的德国开始。位于莱茵河边的卡尔斯鲁厄是一座风景秀丽的城市,在它的城中心,矗立着著名的18世纪的宫殿。郁郁葱葱的森林和温暖的气候也使得这座小城成为了欧洲的一个旅游名胜。然而这些怡人的景色似乎没有分散海因里希?鲁道夫?赫兹(Heinrich Rudolf Hertz)的注意力:现在他正在卡尔斯鲁厄大学的一间实验室里专心致志地摆弄他的仪器。那时候,赫兹刚刚30岁,也许不会想到他将在科学史上成为和他的老师赫耳姆霍兹(Hermann von Helmholtz)一样鼎鼎有名的人物,不会想到他将和卡尔?本茨(Carl Benz)一样成为这个小城的骄傲。现在他的心思,只是完完全全地倾注在他的那套装置上。
关于光的一些性质,人们也很早就开始研究了。基于光总是走直线的假定,欧几里德(Euclid)在《反射光学》(Catoptrica)一书里面就研究了光的反射问题。托勒密(Ptolemy)、哈桑和开普勒(Johannes Kepler)都对光的折射作了研究,而荷兰物理学家斯涅耳(W.Snell)则在他们的工作基础上于1621年总结出了光的折射定律。最后,光的种种性质终于被有“业余数学之王”之称的费尔马(Pierre de Fermat)所归结为一个简单的法则,那就是“光总是走最短的路线”。光学终于作为一门物理学科被正式确立起来。
当黑暗的中世纪过去之后,人们对自然世界有了进一步的认识。波动现象被深入地了解和研究,声音是一种波动的认识也逐渐为人们所接受。人们开始怀疑:既然声音是一种波,为什么光不能够也是波呢?十七世纪初,笛卡儿(Des Cartes)在他《方法论》的三个附录之一《折光学》中率先提出了这样的可能:光是一种压力,在媒质里传播。不久后,意大利的一位数学教授格里马第(Francesco Maria Grimaldi)做了一个实验,他让一束光穿过两个小孔后照到暗室里的屏幕上,发现在投影的边缘有一种明暗条纹的图像。格里马第马上联想起了水波的衍射(这个大家在中学物理的插图上应该都见过),于是提出:光可能是一种类似水波的波动,这就是最早的光波动说。
惠更斯在数学理论方面是具有十分高的天才的,他继承了胡克的思想,认为光是一种在以太里传播的纵波,并引入了“波前”的概念,成功地证明和推导了光的反射和折射定律。他的波动理论虽然还十分粗略,但是所取得的成功却是杰出的。当时随着光学研究的不断深入,新的战场不断被开辟:1665年,牛顿在实验中发现如果让光通过一块大曲率凸透镜照射到光学平玻璃板上,会看见在透镜与玻璃平板接触处出现一组彩色的同心环条纹,也就是著名的“牛顿环”(对图象和摄影有兴趣的朋友一定知道)。到了1669年,丹麦的巴塞林那斯(E.Bartholinus)发现当光在通过方解石晶体时,会出现双折射现象。惠更斯将他的理论应用于这些新发现上面,发现他的波动军队可以容易地占领这些新辟的阵地,只需要作小小的改制即可(比如引进椭圆波的概念)。1690年,惠更斯的著作《光论》(Traite de la Lumiere)出版,标志着波动说在这个阶段到达了一个兴盛的顶点。
胡克和牛顿在历史上也算是一对欢喜冤家。两个人都在力学,光学,仪器等方面有着伟大的贡献。两人互相启发,但是之间也存在着不少的争论。除了关于光本性的争论之外,他们之间还有一个争执,那就是万有引力的平方反比定律究竟是谁发现的问题。胡克在力学与行星运动方面花过许多心血,他深入研究了开普勒定律,于1964年提出了行星轨道因引力而弯曲成椭圆的观点。1674年他根据修正的惯性原理,提出了行星运动的理论。1679年,他在写给牛顿的信中,提出了引力大小与距离的平方成反比这个概念,但是说得比较模糊,并未加之量化(原文是:…my supposition is that the Attraction always is in a. duplicate proportion to the distance from the center reciprocal)。在牛顿的《原理》出版之后,胡克要求承认他对这个定律的优先发现,但牛顿最后的回答却是把所有涉及胡克的引用都从《原理》里面给删掉了。
在节节败退后,微粒终于发现自己无法抵挡对方的进攻。于是它采取了以攻代守的战略。许多对波动说不利的实验证据被提出来以证明波动说的矛盾。其中最为知名的就是马吕斯(Etienne Louis Malus)在1809年发现的偏振现象,这一现象和已知的波动论有抵触的地方。两大对手开始相持不下,但是各自都没有放弃自己获胜的信心。杨在给马吕斯的信里说:“……您的实验只是证明了我的理论有不足之处,但没有证明它是虚假的。”
决定性的时刻在1819年到来了。最后的决战起源于1818年法国科学院的一个悬赏征文竞赛。竞赛的题目是利用精密的实验确定光的衍射效应以及推导光线通过物体附近时的运动情况。竞赛评委会由许多知名科学家组成,这其中包括比奥(J.B.Biot)、拉普拉斯(Pierre Simon de Laplace)和泊松(S.D.Poission),都是积极的微粒说拥护者。组织这个竞赛的本意是希望通过微粒说的理论来解释光的衍射以及运动,以打击波动理论。
赫兹的实验也同时标志着经典物理的顶峰。物理学的大厦从来都没有这样地金壁辉煌,令人叹为观止。牛顿的力学体系已经是如此雄伟壮观,现在麦克斯韦在它之上又构建起了同等规模的另一幢建筑,它的光辉灿烂让人几乎不敢仰视。电磁理论在数学上完美得难以置信,著名的麦氏方程组刚一问世,就被世人惊为天物。它所表现出的深刻、对称、优美使得每一个科学家都陶醉在其中,玻尔兹曼(Ludwig Boltzmann)情不自禁地引用歌德的诗句说:“难道是上帝写的这些吗?”一直到今天,麦氏方程组仍然被公认为科学美的典范,即使在还没有赫兹的实验证实之前,已经广泛地为人们所认同。许多伟大的科学家都为它的魅力折服,并受它深深的影响,有着对于科学美的坚定信仰,甚至认为:对于一个科学理论来说,简洁优美要比实验数据的准确来得更为重要。无论从哪个意义上来说,电磁论都是一种伟大的理论。罗杰?彭罗斯(Roger Penrose)在他的名著《皇帝新脑》(The Emperor’s New Mind)一书里毫不犹豫地将它和牛顿力学,相对论和量子论并列,称之为“Superb”的理论。
物理学征服了世界。在19世纪末,它的力量控制着一切人们所知的现象。古老的牛顿力学城堡历经岁月磨砺风雨吹打而始终屹立不倒,反而更加凸现出它的伟大和坚固来。从天上的行星到地上的石块,万物都必恭必敬地遵循着它制定的规则。1846年海王星的发现,更是它所取得的最伟大的胜利之一。在光学的方面,波动已经统一了天下,新的电磁理论更把它的光荣扩大到了整个电磁世界。在热的方面,热力学三大定律已经基本建立(第三定律已经有了雏形),而在克劳修斯(Rudolph Clausius)、范德瓦尔斯(J.D. Van der Waals)、麦克斯韦、玻尔兹曼和吉布斯(Josiah Willard Gibbs)等天才的努力下,分子运动论和统计热力学也被成功地建立起来了。更令人惊奇的是,这一切都彼此相符而互相包容,形成了一个经典物理的大同盟。经典力学、经典电动力学和经典热力学(加上统计力学)形成了物理世界的三大支柱。它们紧紧地结合在一块儿,构筑起了一座华丽而雄伟的殿堂。
“动力学理论断言,热和光都是运动的方式。但现在这一理论的优美性和明晰性却被两朵乌云遮蔽,显得黯然失色了……”(‘The beauty and clearness of the dynamical theory, which asserts heat and light to be modes of motion, is at present obscured by two clouds.’)
普朗克(Max Carl Ernst Ludwig Planck)于1858年出生于德国基尔(Kiel)的一个书香门第。他的祖父和曾祖父都是神学教授,他的父亲则是一位著名的法学教授,曾经参予过普鲁士民法的起草工作。1867年,普朗克一家移居到慕尼黑,小普朗克便在那里上了中学和大学。在俾斯麦的帝国蒸蒸日上的时候,普朗克却保留着古典时期的优良风格,对文学和音乐非常感兴趣,也表现出了非凡的天才来。
不过,正如我们在前一章里面所说过的那样,当时的理论物理看起来可不是一个十分有前途的工作。普朗克在大学里的导师祖利(Philipp von Jolly)劝他说,物理的体系已经建立得非常成熟和完整了,没有什么大的发现可以做出了,不必再花时间浪费在这个没有多大意义的工作上面。普朗克委婉地表示,他研究物理是出于对自然和理性的兴趣,只是想把现有的东西搞搞清楚罢了,并不奢望能够做出什么巨大的成就。讽刺地是,由今天看来,这个“很没出息”的表示却成就了物理界最大的突破之一,成就了普朗克一生的名望。我们实在应该为这一决定感到幸运。
“……经过一生中最紧张的几个礼拜的工作,我终于看见了黎明的曙光。一个完全意想不到的景象在我面前呈现出来。”(…until after some weeks of the most intense work of my life clearness began to dawn upon me, and an unexpected view revealed itself in the distance)
(die Wahrscheinlichkeit zu finden, dass die NResonatoren ingesamt Schwingungsenergie Un besitzen, Un nicht als eine unbeschr?nkt teilbare, sondern al seine ganzen Zahl von endlichen gleichen Teilen aufzufassen…)
在丹麦,15岁的尼尔斯?玻尔(Niels Bohr)正在哥本哈根的中学里读书。玻尔有着好动的性格,每次打架或争论,总是少不了他。学习方面,他在数学和科学方面显示出了非凡的天才,但是他的笨拙的口齿和惨不忍睹的作文却是全校有名的笑柄。特别是作文最后的总结(conclusion),往往使得玻尔头痛半天,在他看来,这种总结是无意义的重复而已。有一次他写一篇关于金属的论文,最后总结道:In conclusion, Iwould like to mention uranium(总而言之,我想说的是铀)。
路易斯?德布罗意(Louis de Broglie)当时8岁,正在他那显赫的贵族家庭里接受良好的幼年教育。他对历史表现出浓厚的兴趣,并乐意把自己的时间花在这上面。
沃尔夫冈?恩斯特?泡利(Wolfgang Ernst Pauli)才出生8个月,可怜的小家伙似乎一出世就和科学结缘。他的middle name,Ernst,就是因为他父亲崇拜著名的科学家恩斯特?马赫(Ernst Mach)才给他取的。
而再过12个月,维尔兹堡(Wurzberg)的一位著名希腊文献教授就要喜滋滋地看着他的宝贝儿子小海森堡(Werner Karl Heisenberg)呱呱坠地。稍早前,罗马的一位公务员把他的孩子命名为恩里科?费米(Enrico Fermi)。20个月后,保罗?狄拉克(Paul Dirac)也将出生在英国的布里斯托尔港。
还是让我们言归正传,1905年3月18日,爱因斯坦在《物理学纪事》(Annalen der Physik)杂志上发表了一篇论文,题目叫做《关于光的产生和转化的一个启发性观点》(A Heuristic Interpretation of the Radiation and Transformation of Light),作为1905年一系列奇迹的一个开始。这篇文章是爱因斯坦有生以来发表的第六篇正式论文(第一篇是1901年发表的关于毛细现象的东东,用他自己的话来说,“毫无价值”),而这篇论文将给他带来一个诺贝尔奖,也开创了属于量子论的一个新时代。
当然在1911年,玻尔还只是一个有着远大志向和梦想,却是默默无闻的青年。他走在剑桥的校园里,想象当年牛顿和麦克斯韦在这里走过的样子,欢欣鼓舞地像一个孩子。在草草地安定下来之后,玻尔做的第一件事情就是去拜访大名鼎鼎的J.J.汤姆逊(Joseph John Thomson),后者是当时富有盛名的物理学家,卡文迪许实验室的头头,电子的发现者,诺贝尔奖得主。J.J.十分热情地接待了玻尔,虽然玻尔的英语烂得可以,两人还是谈了好长一阵子。J.J.收下了玻尔的论文,并把它放在自己的办公桌上。
这个名单可以继续开下去,一直到长得令人无法忍受为止:英国人索迪(Frederick Soddy),1921年诺贝尔化学奖。瑞典人赫维西(Georg von Hevesy),1943年诺贝尔化学奖。德国人哈恩(Otto Habn),1944年诺贝尔化学奖。英国人鲍威尔(Cecil Frank Powell),1950年诺贝尔物理奖。美国人贝特(Hans Bethe),1967年诺贝尔物理奖。苏联人卡皮查(P.L.Kapitsa),1978年诺贝尔化学奖。
然而,像当年的贝尔佐尼一样,玻尔也有着一个探险家所具备的最宝贵的素质:洞察力和直觉,这使得他能够抓住那个不起眼,但却是唯一的,稍纵即逝的线索,从而打开那扇通往全新世界的大门。1913年初,年轻的丹麦人汉森(Hans Marius Hansen)请教玻尔,在他那量子化的原子模型里如何解释原子的光谱线问题。对于这个问题,玻尔之前并没有太多地考虑过,原子光谱对他来说是陌生和复杂的,成千条谱线和种种奇怪的效应在他看来太杂乱无章,似乎不能从中得出什么有用的信息。然而汉森告诉玻尔,这里面其实是有规律的,比如巴尔末公式就是。他敦促玻尔关心一下巴尔末的工作。
玻尔所有的这些思想,转化成理论推导和数学表达,并以三篇论文的形式最终发表。这三篇论文(或者也可以说,一篇大论文的三个部分),分别题名为《论原子和分子的构造》(On the Constitution of Atoms and Molecules),《单原子核体系》(Systems Containing Only a. Single Nucleus)和《多原子核体系》(Systems Containing Several Nuclei),于1913年3月到9月陆续寄给了远在曼彻斯特的卢瑟福,并由后者推荐发表在《哲学杂志》(Philosophical Magazine)上。这就是在量子物理历史上划时代的文献,亦即伟大的“三部曲”。
不仅如此,玻尔的模型更预测了一些新的谱线的存在,这些预言都很快为实验物理学家们所证实。而在所谓“皮克林线系”(Pickering line series)的争论中,玻尔更是以强有力的证据取得了决定性的胜利。他的原子体系异常精确地说明了一些氦离子的光谱,准确性相比旧的方程,达到了令人惊叹的地步。而亨利?莫斯里(我们前面提到过的年轻天才,可惜死在战场上的那位)关于X射线的工作,则进一步证实了原子有核模型的正确。人们现在已经知道,原子的化学性质,取决于它的核电荷数,而不是传统认为的原子量。基于玻尔理论的电子壳层模型,也一步一步发展起来。只有几个小困难需要解决,比如人们发现,氢原子的光谱并非一根线,而是可以分裂成许多谱线。这些效应在电磁场的参予下又变得更为古怪和明显(关于这些现象,人们用所谓的“斯塔克效应”和“塞曼效应”来描述)。但是玻尔体系很快就予以了强有力的回击,在争取到爱因斯坦相对论的同盟军以及假设电子具有更多的自由度(量子数)的条件下,玻尔和别的一些科学家如索末菲(A.Sommerfeld)证明,所有的这些现象,都可以顺利地包容在玻尔的量子体系之内。虽然残酷的世界大战已经爆发,但是这丝毫也没有阻挡科学在那个时期前进的伟大步伐。
当然,我们可敬的尼尔斯?玻尔先生也不会因为旧量子论的垮台而退出物理舞台。正相反,关于他的精彩故事才刚刚开始。他还要在物理的第一线战斗很长时间,直到逝世为止。1921年9月,玻尔在哥本哈根的研究所终于落成,36岁的玻尔成为了这个所的所长。他的人格魅力很快就像磁场一样吸引了各地的才华横溢的年轻人,并很快把这里变成了全欧洲的一个学术中心。赫维西(Georg von Hevesy)、弗里西(Otto Frisch)、泡利、海森堡、莫特(Nevill Mott)、朗道(Lev D.Landau)、盖莫夫(George Gamov)……人们向这里涌来,充分地感受这里的自由气氛和玻尔的关怀,并形成一种富有激情、活力、乐观态度和进取心的学术精神,也就是后人所称道的“哥本哈根精神”。在弹丸小国丹麦,出现了一个物理学界眼中的圣地,这个地方将深远地影响量子力学的未来,还有我们根本的世界观和思维方式。
三
当玻尔的原子还在泥潭中深陷苦于无法自拔的时候,新的革命已经在酝酿之中。这一次,革命者并非来自穷苦的无产阶级大众,而是出自一个显赫的贵族家庭。路易斯?维克托?皮雷?雷蒙?德?布罗意王子(Prince Louis Victor Pierre Raymond de Broglie)将为他那荣耀的家族历史增添一份新的光辉。
“王子”(Prince,也有翻译为“公子”的)这个爵位并非我们通常所理解的,是国王的儿子。事实上在爵位表里,它的排名并不算高,而且似乎不见于英语世界。大致说来,它的地位要比“子爵”(Viscount)略低,而比“男爵”(Baron)略高。不过这只是因为路易斯在家中并非老大而已,德布罗意家族的历史悠久,他的祖先中出了许许多多的将军、元帅、部长,曾经忠诚地在路易十四、路易十五、路易十六的麾下效劳。他们参加过波兰王位继承战争(1733-1735)、奥地利王位继承战争(1740-1748)、七年战争(1756-1763)、美国独立战争(1775-1782)、法国大革命(1789)、二月革命(1848),接受过弗兰西斯二世(Francis II,神圣罗马帝国皇帝,后来退位成为奥地利皇帝弗兰西斯一世)以及路易?腓力(Louis Philippe,法国国王,史称奥尔良公爵)的册封,家族继承着最高世袭身份的头衔:公爵(法文Duc,相当于英语的Duke)。路易斯?德布罗意的哥哥,莫里斯?德布罗意(Maurice de Broglie)便是第六代德布罗意公爵。1960年,当莫里斯去世以后,路易斯终于从他哥哥那里继承了这个光荣称号,成为第七位duc de Broglie。
当然,在那之前,路易斯还是顶着王子的爵号。小路易斯对历史学表现出浓厚的兴趣,他的祖父,Jacques Victor Albert, duc de Broglie,不但是一位政治家,曾于1873-1874年间当过法国总理,同时也是一位出色的历史学家,尤其精于晚罗马史,写出过著作《罗马教廷史》(Histoire de l'église et de l'empire romain)。小路易斯在祖父的熏陶下,决定进入巴黎大学攻读历史。18岁那年(1910),他从大学毕业,然而却没有在历史学领域进行更多的研究,因为他的兴趣已经强烈地转向物理方面。他的哥哥,莫里斯?德布罗意(第六代德布罗意公爵)是一位著名的射线物理学家,路易斯跟随哥哥参加了1911年的布鲁塞尔物理会议,他对科学的热情被完全地激发出来,并立志把一生奉献给这一令人激动的事业。
1925年4月,在美国纽约的贝尔电话实验室,戴维逊(C.J.Davisson)和革末(L. H. Germer)在做一个有关电子的实验。这个实验的目的是什么我们不得而知,但它牵涉到用一束电子流轰击一块金属镍(nickel)。实验要求金属的表面绝对纯净,所以戴维逊和革末把金属放在一个真空的容器中,以确保没有杂志混入其中。
居里夫人和她的丈夫皮埃尔?居里于1903年分享诺贝尔奖(居里夫人在1911年又得了一个化学奖)。他们的女儿约里奥?居里(Irene Joliot-Curie)也在1935年和她丈夫一起分享了诺贝尔化学奖。居里夫人的另一个女婿,美国外交家Henry R. Labouisse,在1965年代表联合国儿童基金会(UNICEF)获得了诺贝尔和平奖。
1915年,William Henry Bragg和William Lawrence Bragg父子因为利用X射线对晶体结构做出了突出贡献,分享了诺贝尔物理奖金。
1919年,海森堡参予了镇压巴伐利亚苏维埃共和国的军事行动,当然那时候他还只是个大男孩,把这当成一件好玩的事情而已。对他来说,更严肃的是在大学里选择一条怎样的道路。当他进入慕尼黑大学后,这种选择便很现实地摆在他面前:是跟着林德曼(Ferdinand von Lindemann),一位著名的数学家学习数论呢,还是跟着索末非学习物理?海森堡终于选择了后者,从而迈出了一个科学巨人的第一步。
牛顿最为人熟知的一句名言是这样说的:“如果我看得更远的话,那是因为我站在巨人的肩膀上”(If Ihave seen further it is by standing on ye shoulders of Giants)。这句话通常被用来赞叹牛顿的谦逊,但是从历史上来看,这句话本身似乎没有任何可以理解为谦逊的理由。
首先这句话不是原创。早在12世纪,伯纳德(Bernard of Chartres,他是中世纪的哲学家,著名的法国沙特尔学校的校长)就说过:“Nos esse quasi nanos gigantium humeris insidientes”。这句拉丁文的意思就是说,我们都像坐在巨人肩膀上的矮子。这句话,如今还能在沙特尔市那著名的哥特式大教堂的窗户上找到。从伯纳德以来,至少有二三十个人在牛顿之前说过类似的话。
保罗?埃德里安?莫里斯?狄拉克(Paul Adrien Maurice Dirac)于1902年8月8日出生于英国布里斯托尔港。他的父亲是瑞士人,当时是一位法语教师,狄拉克是家里的第二个孩子。许多大物理学家的童年教育都是多姿多彩的,比如玻尔,海森堡,还有薛定谔。但狄拉克的童年显然要悲惨许多,他父亲是一位非常严肃而刻板的人,给保罗制定了众多的严格规矩。比如他规定保罗只能和他讲法语(他认为这样才能学好这种语言),于是当保罗无法表达自己的时候,只好选择沉默。在小狄拉克的童年里,音乐、文学、艺术显然都和他无缘,社交活动也几乎没有。这一切把狄拉克塑造成了一个沉默寡言,喜好孤独,淡泊名利,在许多人眼里显得geeky的人。有一个流传很广的关于狄拉克的笑话是这样说的:有一次狄拉克在某大学演讲,讲完后一个观众起来说:“狄拉克教授,我不明白你那个公式是如何推导出来的。”狄拉克看着他久久地不说话,主持人不得不提醒他,他还没有回答问题。
狄拉克也是卡皮察俱乐部的成员之一,他当时不在剑桥,所以没有参加这个聚会。不过他的导师福勒(William Alfred Fowler)参加了,而且大概在和海森堡的课后讨论中,得知他已经发明了一种全新的理论来解释原子光谱问题。后来海森堡把他的证明寄给了福勒,而福勒给了狄拉克一个复印本。这一开始没有引起狄拉克的重视,不过大概一个礼拜后,他重新审视海森堡的论文,这下他把握住了其中的精髓:别的都是细枝末节,只有一件事是重要的,那就是我们那奇怪的矩阵乘法规则:p×q≠q×p。
最最叫人惊讶的是,这样一个薛定谔的婚姻后来却几乎得到了完美的结局。尽管经历了种种风浪,穿越重重险滩,他和安妮却最终白头到老,真正像在誓言中所说的那样:to have and to hold, in sickness and in health, till death parts us。在薛定谔生命的最后时期,两人早已达成了谅解,安妮说:“在过去41年里的喜怒哀乐把我们紧紧结合在一起,这最后几年我们也不想分开了。”薛定谔临终时,安妮守在他的床前握住他的手,薛定谔说:“现在我又拥有了你,一切又都好起来了。”
物理学统治整个宇宙,它的过去和未来,一切都尽在掌握。这已经成了物理学家心中深深的信仰。19世纪初,法国的大科学家拉普拉斯(Pierre Simon de Laplace)在用牛顿方程计算出了行星轨道后,把它展示给拿破仑看。拿破仑问道:“在你的理论中,上帝在哪儿呢?”拉普拉斯平静地回答:“陛下,我的理论不需要这个假设。”
(We are all deeply conscious today that the enthusiasm of our forebears for the marvelous achievements of Newtonian mechanics led them to make generalizations in this area of predictability which, indeed, we may have generally tended to believe before 1960, but which we now recognize were false. We collectively wish to apologize for having misled the general educated public by spreading ideas about the determinism of systems satisfying Newton's laws of motion that, after 1960,were to be proved incorrect.)
会议的气氛从一开始便是火热的,像拳王争霸赛一样,重头戏到来之前先有一系列的垫赛:大家先就康普顿的实验做了探讨,然后各人分成了泾渭分明的阵营,互相炮轰。德布罗意一马当先做了发言,他试图把粒子融合到波的图像里去,提出了一种“导波”(pivot wave)的理论,认为粒子是波动方程的一个奇点,它必须受波的控制和引导。泡利站起来狠狠地批评这个理论,他首先不能容忍历史车轮倒转,回到一种传统图像中,然后他引了一系列实验结果来反驳德布罗意。众所周知,泡利是世界第一狙击手,谁要是被他盯上了多半是没有好下场的,德布罗意最后不得不公开声明放弃他的观点。幸好薛定谔大举来援,不过他还是坚持一个非常传统的解释,这连盟军德布罗意也觉得不大满意,泡利早就嘲笑薛定谔为“幼稚”。波恩和海森堡躲在哥本哈根掩体后面对其开火,他们在报告最后说:“我们主张,量子力学是一种完备的理论,它的基本物理假说和数学假设是不能进一步修改的。”他们也集中火力猛烈攻击了薛定谔的“电子云”,后者认为电子的确在空间中实际地如波般扩散开去。海森堡评论说:“我从薛定谔的计算中看不到任何东西可以证明事实如同他所希望的那样。”薛定谔承认他的计算确实还不太令人满意,不过他依然坚持,谈论电子的轨道是“胡扯”(应该是波本征态的叠加),波恩回敬道:“不,一点都不是胡扯。”在一片硝烟中,会议的组织者,老资格的洛伦兹也发表了一些保守的观点,and so on and so on……
对这一公案的争论逐渐激烈起来,最有影响的几本著作有:Robert Jungk的《比一千个太阳更明亮》(Brighter Than a. Thousand Sunds,1956),此书赞扬了德国科学家那高尚的道义,在战时不忘人类公德,虽然洞察原子弹的奥秘,却不打开这潘多拉盒子。1967年David Irving出版了《德国原子弹计划》(The German Atomic Bomb),此时德国当年的秘密武器报告已经得见天日,给作品带来了丰富的资料。Irving虽然不认为德国科学家有吹嘘的那样高尚的品德,但他仍然相信当年德国人是清楚原子弹技术的。然后是Margaret Gowing那本关于英国核计划的历史,里面考证说德国人当年在一些基本问题上错得离谱,这让海森堡本人非常恼火。他说:“(这本书)大错特错,每一句都是错的,完全是胡说八道。”他随后出版了著名的自传《物理和物理之外》(Physics and Beyond),自然再次地强调了德国人的道德和科学水平。凡是当年和此事有点关系的人都纷纷发表评论意见,众说纷纭,有如聚讼,谁也没法说服对方。
海森堡本人于1976年去世了。在他死后两年,英国人Jones出版了《高度机密战争:英国科学情报部门》(Most Secret War:British Scientific Intelligentce)一书,详细地分析了海森堡当年在计算时犯下的令人咋舌的错误。但他的分析却没有被Mark Walker所采信,在资料详细的《德国国家社会主义及核力量的寻求》(German National Socialism and the Quest for Nubclear Power,1989年出版)中,Walker还是认为海森堡在1942年头脑清楚,知道正确的事实。
1992年披露了一件非常重要的史料,那就是海森堡他们当初被囚在Farm Hall的窃听录音抄本。这个东东长期来是保密的,只能在几个消息灵通者的著作中见到一星半点。1992年这份被称为Farm Hall Transcript的文件解密,由加州大学伯克利出版,引起轰动。Powers就借助了这份新资料,写出了他的著作。
Michael Frayn着迷于Powers的说法,海森堡去到哥本哈根向玻尔求证盟军在这方面的进展,并试图达成协议,双方一起“破坏”这个可怕的计划。也就是说,任何一方的科学家都不要积极投入到原子弹这个领域中去,这样大家扯平,人类也可以得救。这几乎是一幕可遇而不可求的戏剧场景,种种复杂的环境和内心冲突交织在一起,纠缠成千千情结,组成精彩的高潮段落。一方面海森堡有强烈的爱国热情和服从性,他无法拒绝为德国服务的命令。但海森堡又挣扎于人类的责任感,感受到科学家的道德情怀。而且他又是那样生怕盟军也造出原子弹,给祖国造成永远的伤痕。海森堡面对玻尔,那个伟大的老师玻尔,那个他当作父亲一样看待的玻尔,曾经领导梦幻般哥本哈根派的玻尔,却也是“敌人”玻尔,视德国为仇敌的玻尔,却又教人如何开口,如何遣词……少年的回忆,物理上的思索,敬爱的师长,现实的政治,祖国的感情,人类的道德责任,战争年代……这些融在一起会产生怎样的语言和思绪?还有比这更杰出的戏剧题材吗?
这样的残酷的两难,造成观众情感上的巨大冲击,展示整个复杂的人性。戏剧本质上便是一连串的冲突,如此精彩的题材,已经注定了这是一出伟大的戏剧作品。但从历史上来说,这样的美妙景象却是靠不住的。Michael Frayn后来说他认为Powers有道理,至少他掌握了以前人们没有的资料,也就是Farm Hall Transcript,可惜他的这一宝似乎押错了。(待续)
不能不承认,这听起来很有强烈的主观唯心论的味道。虽然它其实和我们通常理解的那种哲学理论有一定区别,不过讲到这里,许多人大概都会自然而然地想起贝克莱(George Berkeley)主教的那句名言:“存在就是被感知”(拉丁文:Esse Est Percipi)。这句话要是稍微改一改讲成“存在就是被测量”,那就和哥本哈根派的意思差不离了。贝克莱在哲学史上的地位无疑是重要的,但人们通常乐于批判他,我们的哥本哈根派是否比他走得更远呢?好歹贝克莱还认为事物是连续客观地存在的,因为总有“上帝”在不停地看着一切。而量子论?“陛下,我不需要上帝这个假设”。
半死半活的“薛定谔的猫”是科学史上著名的怪异形象之一,和它同列名人堂的也许还有芝诺的那只永远追不上的乌龟,拉普拉斯的那位无所不知从而预言一切的老智者,麦克斯韦的那个机智地控制出入口,以致快慢分子逐渐分离,系统熵为之倒流的妖精,被相对论搞得头昏脑涨,分不清谁是哥哥谁是弟弟的那对双生子,等等等等。薛定谔的猫在大众中也十分受欢迎,常常出现在剧本,漫画和音乐中,虽然比不上同胞Garfield或者Tom,也算是有点人气。有意思的是,它常常和“巴甫洛夫的狗”作为搭档一唱一和出现。它最长脸的一次大概是被“恐惧之泪”(Tears for Fears),这个在80年代红极一时的乐队作为一首歌的标题演唱,虽然歌词是“薛定谔的猫死在了这个世界”。
我们已经在科莫会议上认识了冯?诺伊曼(John Von Neumann),这位现代计算机的奠基人之一,20世纪最杰出的数学家。关于他的种种传说在科学界就像经久不息的传奇故事,流传得越来越广越来越玄:说他6岁就能心算8位数乘法啦,8岁就懂得微积分啦,12岁就精通泛函分析啦,又有人说他过目不忘,精熟历史,有人举出种种匪夷所思的例子来说明他的心算能力如何惊人。有人说他10岁便通晓5种语言,并能用每一种来写搞笑的打油诗,这一数字在另一些人口中变成了7种。不管怎么样,每个人都承认,这家伙是一个百年罕见的天才。
维格纳论证说,意识可以作用于外部世界,使波函数坍缩是不足为奇的。因为外部世界的变化可以引起我们意识的改变,根据牛顿第三定律,作用与反作用原理,意识也应当能够反过来作用于外部世界。他把论文命名为《对于灵肉问题的评论》(Remarks on the mind-body question),收集在他1967年的论文集里。
量子论是不是玩得过火了?难道“意识”,这种虚无飘渺的概念真的要占领神圣的物理领域,成为我们理论的一个核心吗?人们总在内心深处排斥这种“恐怖”的想法,柯文尼(Peter Coveney)和海菲尔德(Roger Highfield)写过一本叫做《时间之箭》(The arrow of time)的书,其中讲到了维格纳的主张。但在这本书的中文版里,译者特地加了一个“读者存照”,说这种基于意识的解释是“牵强附会”的,它声称观测完全可以由一套测量仪器作出,因此是“完全客观”的。但是这种说法显然也站不住脚,因为仪器也只不过给冯诺伊曼的无限后退链条增添了一个环节而已,不观测这仪器,它仍然处在叠加的波函数中。
但是,无论如何,当新物理学触及到这样一个困扰了人类千百年的本体问题核心后,这无疑也激起了许多物理学家们的热情和好奇心。的确有科学家沿着维格纳的方向继续探索,并论证意识在量子论解释中所扮演的地位。这里面的代表人物是伯克利劳伦斯国家物理实验室的美国物理学家亨利?斯塔普(Henry Stapp),他自1993年出版了著作《精神,物质和量子力学》(Mind, Matter, and Quantum Mechanics)之后,便一直与别的物理学家为此辩论至今(大家如果有兴趣,可以去他的网页http://www-physics.lbl.gov/~stapp/stappfiles.html看看他的文章)。这种说法也获得了某些人的支持,去年,也就是2003年,还有人(阿姆斯特丹大学的Dick J. Bierman)宣称用实验证明了人类意识“的确”使波函数坍缩。不过这一派的支持者也始终无法就“意识”建立起有说服力的模型来,对于他们的宣称,我们在心怀惧意的情况下最好还是采取略为审慎的保守态度,看看将来的发展如何再说。
宇宙的“分裂”其实应该算是一种误解,不过直到现在,大多数人,包括许多物理学家仍然是这样理解埃弗莱特的!这样一来,这个理论就显得太大惊小怪了,为了一个小小的电子从左边还是右边通过的问题,我们竟然要兴师动众地牵涉整个宇宙的分裂!许多人对此的评论是“杀鸡用牛刀”。爱因斯坦曾经有一次说:“我不能相信,仅仅是因为看了它一眼,一只老鼠就使得宇宙发生剧烈的改变。”这话他本来是对着哥本哈根派说的,不过的确代表了许多人的想法:用牺牲宇宙的代价来迎合电子的随机选择,未免太不经济廉价,还产生了那么多不可观察的“平行宇宙”的废料。MWI后来最为积极的鼓吹者之一,德克萨斯大学的布莱斯"德威特(Bryce S. DeWitt)在描述他第一次听说MWI的时候说:“我仍然清晰地记得,当我第一次遇到多世界概念时所受到的震动。100个略有缺陷的自我拷贝贝,都在不停地分裂成进一步的拷贝,而最后面目全非。这个想法是很难符合常识的。这是一种彻头彻尾的精神分裂症……”对于我们来说,也许接受“意识”,还要比相信“宇宙分裂”来得容易一些!
问题是,分解15看起来很简单,但如果要分解一个很大很大的数,我们所遭遇到的困难就变得几乎不可克服了。比如,把10949769651859分解成它的质因数的乘积,我们该怎么做呢?糟糕的是,在解决这种问题上,我们还没有发现一种有效的算法。一种笨办法就是用所有已知的质数去一个一个地试,最后我们会发现10949769651859=4220851×2594209(数字取自德义奇的著作The Fabric of Reality),但这是异常低效的。更遗憾的是,随着数字的加大,这种方法所费的时间呈现出几何式的增长!每当它增加一位数,我们就要多费3倍多的时间来分解它,很快我们就会发现,就算计算时间超过宇宙的年龄,我们也无法完成这个任务。当然我们可以改进我们的算法,但目前所知最好的算法(我想应该是GNFS)所需的复杂性也只不过比指数性的增长稍好,仍未达到多项式的要求(所谓多项式,指的是当处理数字的位数n增大时,算法所费时间按照多项式的形式,也就是n^k的速度增长)。
1928年7月28日,距离量子论最精彩的华章——不确定性原理的谱写已经过去一年有余。在这一天,约翰"斯图尔特"贝尔(John Stewart Bell)出生在北爱尔兰的首府贝尔法斯特。小贝尔在孩提时代就表现出了过人的聪明才智,他在11岁上向母亲立志,要成为一名科学家。16岁时贝尔因为尚不够年龄入读大学,先到贝尔法斯特女王大学的实验室当了一年的实习工,然而他的才华已经深深感染了那里的教授和员工。一年后他顺理成章地进入女王大学攻读物理,虽然主修的是实验物理,但他同时也对理论物理表现出非凡的兴趣。特别是方兴未艾的量子论,它展现出的深刻的哲学内涵令贝尔相当沉迷。
1964年,贝尔把他的不等式发表在一份名为《物理》(Physics)的杂志的创刊号上,题为《论EPR佯谬》(On the Einstein-Podolsky-Rosen Paradox)。这篇论文是20世纪物理史上的名篇,它的论证和推导如此简单明晰却又深得精髓,教人拍案叫绝。1973年诺贝尔物理奖得主约瑟夫森(Brian D. Josephson)把贝尔不等式称为“物理学中最重要的新进展”,斯塔普(Henry Stapp,就是我们前面提到的,鼓吹精神使波函数坍缩的那个)则把它称作“科学中最深刻的发现”(the most profound discovery in science)。
不过,《物理》杂志却没有因为发表了这篇光辉灿烂的论文而得到什么好运气,这份期刊只发行了一年就倒闭了。如今想要寻找贝尔的原始论文,最好还是翻阅他的著作《量子力学中的可道与不可道》(Speakable and Unspeakable in Quantum Mechanics, Cambridge 1987)。
在这之前,贝尔发现了冯诺伊曼的错误,并给《现代物理评论》(Reviews of Modern Physics)杂志写了文章。虽然因为种种原因,此文直到1966年才被发表出来,但无论如何已经改变了这样一个尴尬的局面,即一边有冯诺伊曼关于隐函数理论不可能的“证明”,另一边却的确存在着玻姆的量子势!冯诺伊曼的封咒如今被摧毁了。
如果我们放弃实在性,那就回到量子论的老路上来,承认在我们观测之前,两个粒子不存在于“客观实在”之内。它们不具有通常意义上的物理属性(如自旋),只有当观测了以后,这种属性才变得有意义。在EPR实验中,不到最后关头,我们的两个处于纠缠态粒子都必须被看成一个不可分割的整体,那时在现实中只有“一个粒子”(当然是叠加着的),而没有“两个粒子”。所谓两个粒子,只有当观测后才成为实实在在的东西(波函数坍缩了)。当然,在做出了这样一个令人痛心的让步后,我们还是可以按照自己的口味不同来选择:究竟是更进一步,彻底打垮决定论,也就是保留哥本哈根解释;还是在一个高层次的角度上,保留决定论,也即采纳多宇宙解释!需要说明的是,MWI究竟算不算一个定域的(local)理论,各人之间的说法还是不尽相同的。除去Stapp这样的反对者不谈,甚至在它的支持者(比如Deutsch,Tegmark或者Zeh)中,其口径也不是统一的。不过这也许只是一个定义和用词的问题,因为量子纠缠本身或许就可以定义为某种非定域的物理过程(Zeh,Found. of Physics Letters 13,2000,p22),但大家都同意,MWI肯定不是一个定域实在的理论,而且超光速的信号传递在其内部也是不存在的。关键在于,根据MWI,每次我们进行观测都在“现实”中产生了不止一个结果(事实上,是所有可能的结果)!这和爱因斯坦所默认的那个传统的“现实”是很不一样的。
阿斯派克特实验结果出来之后,BBC的广播制作人朱里安"布朗(Julian Brown)和纽卡斯尔大学的物理学教授保罗"戴维斯(Paul Davies,他如今在澳大利亚的Macquarie大学,他同时也是当代最负盛名的科普作家之一)决定调查一下科学界对这个重要的实验究竟会做出什么样的反应。他们邀请8位在量子论领域最有名望的专家作了访谈,征求对方对于量子力学和阿斯派克特实验的看法。这些访谈记录最后被汇集起来,编成一本书,于1986年由剑桥出版社出版,书名叫做《原子中的幽灵》(The Ghost in the Atom)。
在这样一种大杂烩式的争论中,阿斯派克特实验似乎给我们的未来蒙上了一层更加扑朔迷离的影子。爱因斯坦有一次说:“虽然上帝神秘莫测,但他却没有恶意。”但这样一位慈祥的上帝似乎已经离我们远去了,留给我们一个难以理解的奇怪世界,以及无穷无尽的争吵。我们在隐函数这条道路上的探索也快接近尽头了,关于玻姆的理论,也许仍然有许多人对它表示足够的同情,比如John Gribbin在他的名作《寻找薛定谔的猫》(In Search of Schrodinger’s Cat)中还把自己描述成一个多宇宙的支持者,而在10年后的《薛定谔的猫以及对现实的寻求》(Schrodinger’s Kittens and the Search for Reality)一书中,他对MWI的热情已经减退,而对玻姆理论表示出了谨慎的乐观。我们不清楚,也许玻姆理论是对的,但我们并没有足够可靠的证据来说服我们自己相信这一点。除了玻姆的隐函数理论之外,还有另一种隐函数理论,它由Edward Nelson所发明,大致来说,它认为粒子按照某种特定的规则在空间中实际地弥漫开去(有点像薛定谔的观点),类似波一般地确定地发展。我们不打算过多地深入探讨这些观点,我们所不满的是,这些和爱因斯坦的理想相去甚远!为了保有实在性而放弃掉定域性,也许是一件饮鸩止渴的事情。我们不敢说光速绝对地不可超越,只是要推翻相对论,现在似乎还不大是时候,毕竟相对论也是一个经得起考验的伟大理论。
大多数系综论者都喜欢把这个概念的源头上推到爱因斯坦,比如John Taylor,或者加拿大McGill大学的B. C. Sanctuary。爱因斯坦曾经说过:“任何试图把量子论的描述看作是对于‘单个系统’的完备描述的做法都会使它成为极不自然的理论解释。但只要接受这样的理解方式,也即(量子论的)描述只能针对系统的‘全集’,而非单个个体,上述的困难就马上不存在了。”这个论述成为了系综解释的思想源泉(见于Max Jammer《量子力学的哲学》一书)。
1986年7月15日,我们提到的那3位科学家在《物理评论》杂志上发表了一篇论文,题为《微观和宏观系统的统一动力学》(Unified dynamics for microscopic and macroscopic systems),从而开创了GRW理论。GRW的主要假定是,任何系统,不管是微观还是宏观的,都不可能在严格的意义上孤立,也就是和外界毫不相干。它们总是和环境发生着种种交流,为一些随机(stochastic)的过程所影响,这些随机的物理过程——不管它们实质上到底是什么——会随机地造成某些微观系统,比如一个电子的位置,从一个弥漫的叠加状态变为在空间中比较精确的定域(实际上就是哥本哈根口中的“坍缩”),尽管对于单个粒子来说,这种过程发生的可能性是如此之低——按照他们原本的估计,平均要等上10^16秒,也就是近10亿年才会发生一次。所以从整体上看,微观系统基本上处于叠加状态是不假的,但这种定域过程的确偶尔发生,我们把这称为一个“自发的定域过程”(spontaneous localization)。GRW有时候也称为“自发定域理论”。
Roland Omnes后来提到,Ghirardi在私人的谈话中承认了这一困难。但他争辩说,就算在光子使银离子感光这一过程中牵涉到的粒子数目不足以使系统足够快地完成自发定域,我们谁都无法意识到这一点!如果作为观测者的我们不去观测这个实验的结果,谁知道呢,说不定光子真的需要等上一年来得到精确的位置。可是一旦我们去观察实验结果,这就把我们自己的大脑也牵涉进整个系统中来了。关键是,我们的大脑足够“大”(有没有意识倒不重要),足够大的物体便使得光子迅速地得到了一个相对精确的定位!
对于两片树叶来讲,它们通常是互相相干的。我们无法明确地区分1:0获胜和2:0获胜这两种历史,因此也无法用传统的概率去计算它们。但我们可以通过适当的粗粒化来构建符合常识的那些历史,比如我们可以区分“胜”,“平”和“负”这三大类历史,因为它们之间已经失去了干涉,退相干了。如此一来,我们就可以用传统的经典概率来计算这些历史,这就形成了“一族”退相干历史(a decoherent family of histories),只有在同一族里,我们才能运用通常的理性逻辑来处理它们之间的概率关系。有的时候,我们也不说“退相干”,而把它叫做“一致历史”(consistent histories),DH的创建人之一格里菲斯就爱用这个词,因此“退相干历史”也常常被称为“一致历史”解释,更加通俗一点,也可以称为“多历史”(many histories)理论。
但DH的支持者辩护说,任何理性的逻辑推理(reasoning),都只能用在同一个退相干家族中,而不能跨家族使用。比如当我们在“胜,平,负”这样一族历史中得到了“1:0的精粒历史发生了”这样一个结论后,我们绝不能把它带到另一族历史(比如“没进球,进1球,进2球,进2球以上”)中去,并与其相互比较。他们把这总结成所谓的“同族原则”(single family rule),并宣称这是量子论中最重要的原则。
量子论的基本形式只是一个大的框架,它描述了单个粒子如何运动。但要描述在高能情况下,多粒子之间的相互作用时,我们就必定要涉及到场的作用,这就需要如同当年普朗克把能量成功地量子化一样,把麦克斯韦的电磁场也进行大刀阔斧的量子化——建立量子场论(quantum field theory)。这个过程是一个同样令人激动的宏伟故事,如果铺展开来叙述,势必又是一篇规模庞大的史话,因此我们只是在这里极简单地作一些描述。这一工作由狄拉克开始,经由约尔当、海森堡、泡利和维格纳的发展,很快人们就认识到:原来所有粒子都是弥漫在空间中的某种场,这些场有着不同的能量形态,而当能量最低时,这就是我们通常说的“真空”。因此真空其实只不过是粒子的一种不同形态(基态)而已,任何粒子都可以从中被创造出来,也可以互相湮灭。狄拉克的方程预言了所谓的“反物质”的存在,任何受过足够科普熏陶的读者对此都应该耳熟能详:比如一个正常的氢原子由带正电的质子和带负电的电子组成,但在一个“反氢原子”中,质子却带着负电,而电子带着正电!当一个原子和一个“反原子”相遇,它们就轰隆一声放出大量的能量辐射,然后双方同时消失得无影无踪,其关系就符合20世纪最有名的那个物理方程:E=mc^2!
这可真是让人沮丧的结果,理论算出了无穷大,总归是一件荒谬的事情。为了消除这个无穷大,无数的物理学家们进行了艰苦卓绝,不屈不挠的斗争。这个阴影是如此难以驱散,如附骨之蛆一般地叫人头痛,以至于在一段时间里把物理学变成了一个让人无比厌憎的学科。最后的解决方案是日本物理学家朝永振一郎、美国人施温格(Julian S Schwiger)和戴森(Freeman Dyson),还有那位传奇的费因曼所分别独立完成的,被称为“重正化”(renormalization)方法,具体的技术细节我们就不用理会了。虽然认为重正化牵强而不令人信服的科学家大有人在,但是采用这种手段把无穷大从理论中赶走之后,剩下的结果其准确程度令人吃惊得瞠目结舌:处理电子的量子电动力学(QED)在经过重正化的修正之后,在电子磁距的计算中竟然一直与实验值符合到小数点之后第11位!亘古以来都没有哪个理论能够做到这样教人咋舌的事情。
但所有这些力的本质是什么呢?是不是也如同电磁力那样,是因为交换粒子而形成的?日本物理学家汤川秀树——他或许是日本最著名的科学家——预言如此。在强相互作用力中,汤川认为这是因为核子交换一种新粒子——介子(meson)而形成的。他所预言的介子不久就为安德森等人所发现,不过那却是一种不同的介子,现在称为μ子,它和汤川理论无关。汤川所预言的那种介子现在称为π子,它最终在1947年为英国人鲍威尔(Cecil Frank Powell)在研究宇宙射线时所发现。汤川获得了1949年的诺贝尔物理奖,而鲍威尔获得了1950年的。对于强相互作用力的研究仍在继续,人们把那些感受强相互作用力的核子称为“强子”,比如质子、中子等。1964年,我们的盖尔曼提出,所有的强子都可以进一步分割,这就是如今家喻户晓的“夸克”模型。每个质子或中子都由3个夸克组成,每种夸克既有不同的“味道”,更有不同的“颜色”,在此基础上人们发明了所谓的“量子色动力学”(QCD),来描述。夸克之间同样通过交换粒子来维持作用力,这种被交换的粒子称为“胶子”(gluon)。各位也许已经有些头晕脑胀,我们就不进一步描述了。再说详细描述基本粒子的模型需要太多的笔墨,引进太多的概念,但我们的史话所留下的篇幅已经不多,所以只能这样简单地一笔带过。如果想更好地了解有关知识,盖尔曼曾写过一本通俗的读物《夸克与美洲豹》,而伟大的阿西莫夫(Isaac Asimov)则有更多精彩的论述,虽然时代已经不同,但许多作品却仍然并不过时!
物理学家有一个梦想,一个深深植根于整个自然的梦想。他们梦想有一天,深壑弥合,高山夷平,荆棘变沃土,歧路变通衢。他们梦想造物主的光辉最终被揭示,而众生得以一起朝觐这一终极的奥秘。而要实现这个梦想,就需要把量子论和相对论真正地结合到一起,从而创造一个量子引力理论。它可以解释一切的力,进而阐释一切的物理现象。这样的理论是上帝造物的终极蓝图,它讲述了这个自然最深刻的秘密。只有这样的理论,才真正有资格称得上“大统一”,不过既然大统一的名字已经被GUT所占用了,人们给这种终极理论取了另外一个名字:万能理论(Theory of Everything,TOE)。